
HECATE: Performance-Aware Scale Optimization

for Homomorphic Encryption Compiler

Yongwoo Lee

Yonsei University

Seoul, Republic of Korea

dragonrain96@yonsei.ac.kr

Seonyeong Heo

ETH Zurich

Zurich, Switzerland

seoheo@ethz.ch

Seonyoung Cheon

Yonsei University

Seoul, Republic of Korea

sunyoung7708@yonsei.ac.kr

Shinnung Jeong

Yonsei University

Seoul, Republic of Korea

shin0403@yonsei.ac.kr

Changsu Kim

Seoul National University

Seoul, Republic of Korea

kcs9301@snu.ac.kr

Eunkyung Kim

Samsung SDS

Seoul, Republic of Korea

ek41.kim@samsung.com

Dongyoon Lee

Stony Brook University

Stony Brook, USA

dongyoon@cs.stonybrook.edu

Hanjun Kim

Yonsei University

Seoul, Republic of Korea

hanjun@yonsei.ac.kr

Abstract—Despite the benefit of Fully Homomorphic Encryp-
tion (FHE) that supports encrypted computation, writing an
efficient FHE application is challenging due to magnitude scale
management. Each FHE operation increases scales of ciphertext
and leaving the scales high harms performance of the following
FHE operations. Thus, rescaling ciphertext is inevitable to opti-
mize an FHE application, but since FHE requires programmers
to match the rescaling levels of operands of each FHE operation,
programmers should rescale ciphertext reflecting the entire
FHE application. Although recently proposed FHE compilers
reduce the programming burden by automatically manipulating
ciphertext scales, they fail to fully optimize the FHE application
because they greedily rescale the ciphertext without considering
their performance impacts throughout the entire application.

This work proposes HECATE, a new FHE compiler framework
that optimizes scales of ciphertext reflecting their rescaling levels
and performance impact. With a new type system that embeds
the scale and rescaling level, and a new rescaling operation
called downscale, HECATE makes various scale management
plans, analyzes their expected performance, and finds the optimal
rescaling points throughout the entire FHE application. This
work implements HECATE on top of the MLIR framework with a
Python frontend and shows that HECATE achieves 27% speedup
over the state-of-the-art approach for various FHE applications.

Index Terms—Homomorphic encryption, compiler, privacy-
preserving machine learning, deep learning

I. INTRODUCTION

Fully Homomorphic Encryption (FHE) [1]–[15] allows com-

putations on a ciphertext without decrypting it first, enabling

privacy-preserving computation offloading. In the form of FHE,

decrypting the computation result on a ciphertext is identical

to the computation result on a plaintext. Since FHE allows an

application to safely outsource computation without exposing

its data, it removes privacy barriers inhibiting data sharing and

enables new services in highly regulated industries such as

healthcare and financial business. Especially, the RNS-CKKS

FHE scheme [7], one of the best performing state-of-the-

art FHE schemes, is widely used in FHE libraries such as

Microsoft’s SEAL [16] and HEAAN [17].

Despite the benefits of FHE, existing FHE schemes [7]–

[10] require in-depth knowledge about the FHE internals such

as scale management to achieve desired performance. For

example, RNS-CKKS [7] encodes a real number as an integer

with a scale representing the position of decimal point before

encryption. The scale exponentially increases with the degree of

multiplications. Since a ciphertext with a larger scale requires

more memory space and execution time to store and operate

the ciphertext, to keep the scale under control without slowing

down an FHE application, programmers should manually insert

a parameter switching operation called rescale that reduces

the scale by a fixed amount and increases its rescaling level.

Moreover, since RNS-CKKS requires programmers to match

the rescaling levels of the operands of each operation, scale

manipulation requires huge programming efforts.

Recently proposed FHE compilers [18]–[21] reduce the pro-

gramming burden by automatically managing ciphertext scales,

but they fail to fully optimize FHE applications. The compilers

trace the scale growth, automatically insert rescale operations

where the scale of rescaled value becomes larger than the

minimum scale, called waterline, and match the rescaling levels

of FHE operands. However, the waterline rescaling does not

consider its performance impact. In RNS-CKKS, the latency

of an operation depends on the recaling levels of the operands,

but existing scale management schemes do not consider them,

losing performance optimization opportunities.

This work proposes HECATE, a new FHE compiler frame-

work that optimizes scales of ciphertexts reflecting rescaling

levels and their performance impacts. First, HECATE proposes

a new parameter switching operation called downscale that

rescales a ciphertext even though its scale is smaller than the

sum of rescaling factor and waterline, thus enabling proactive

rescaling. Second, HECATE analyzes ciphertexts and their FHE

operations and generates scale management units by grouping

ciphertexts that have the same scale and rescaling level. Third,

HECATE constructs various scale management plans, estimates

their performance, and finds the optimal scale management

plan. Furthermore, to respect the constraints on scales and

rescaling levels of FHE operands, HECATE introduces a new

type system that verifies the scales and levels.

This work implements the HECATE framework on top of

the MLIR framework [22] with a Python frontend. HECATE

is evaluated with various machine learning and deep learning

algorithms in terms of performance. The evaluation results

show that the HECATE framework outperforms EVA, the state-

of-the-art approach, with 27.38% speedup for the machine

learning-based FHE applications, including neural networks

such as multi-layer perceptron (MLP) and LeNet.

Followings are the contributions of this work.

• The HECATE language compiler that supports performance-

aware scale optimization for FHE applications;

• the new parameter switching operation called downscale

that enables proactive rescaling;

• the scale management space exploration scheme that opti-

mizes ciphertext scales reflecting their performance impact;

• the new type system that reflects constraints on FHE

operations and rescaling operations.

II. BACKGROUND AND MOTIVATION

Homomorphic Encryption (HE) allows arithmetic operations

such as addition and multiplication over encrypted data. HE

guarantees that when decrypted, the result of the computation

is the same as if the operations had been applied on the

unencrypted data. While Leveled Homomorphic Encryption

schemes [23]–[25] limit the maximum depth of multiplication,

Fully Homomorphic Encryption (FHE) schemes [7]–[10]

support an arbitrary number of arithmetic computations. Among

the FHE schemes, this work targets RNS-CKKS [7] that is

widely used in FHE libraries [16] and compilers [18]–[21].

A. RNS-CKKS: The State-of-the-Art FHE Scheme

RNS-CKKS [7] is one of the best performing FHE schemes.

RNS-CKKS is constructed on the Ring Learning with Errors

(RLWE) problem [26] which adds and removes a small random

error to a ciphertext during encryption and decryption. It is

well suited to machine learning applications that include a large

number of integer/fixed-point multiplications yet are inherently

tolerant to some error noise. Thus, existing FHE libraries (e.g.,

SEAL [16]) and FHE compilers (e.g., CHET [18], EVA [19],

and HECATE) mainly target RNS-CKKS.

Encryption parameters: RNS-CKKS require programmers

to (manually) set two encryption parameters, coefficient modu-

lus Q and polynomial modulus N , which affect the performance,

correctness, and security of an FHE application. Unfortunately,

determining optimal Q and N parameters require in-depth

knowledge about RNS-CKKS internals and constraints. For

performance, Q and N are preferred to be set as small as

possible because larger values of them increase the cost of

FHE operations. However, they have to be set reasonably large

for security and correctness reasons. For security, in theory,

a larger N provides a stronger security guarantee for a given

Q. In practice, the minimum value of N (given Q) against

currently known attacks is available in [27]. For correctness,

Q should be set to be large enough to avoid so-called “scale

overflow”.

𝑚1

𝑆"

𝑆"

𝑒1 𝑒2

* =
𝑚1𝑚2

𝑒
∗

𝑄 = 𝑆"
$

𝐿𝑒𝑣𝑒𝑙 = 0

rescale

𝑒
∗

𝑚1𝑚2/𝑆#

𝑄 = 𝑆"
%

𝐿𝑒𝑣𝑒𝑙 = 1

𝑚2

𝑄

Fig. 1: FHE computation with RNS-CKKS. A ciphertext initially has coefficient
modulus Q and stores a message which has scale mi with noise ei. After
multiplication, the scale of the resulting ciphertext grows to m1m2 and noise
grows to e∗. To keep the result scale at the same level, the rescaling operation
is necessary that divides the coefficient modulus by the rescale factor that

is predefined as Sf . After rescaling, the scale is reduced by S−1

f
. The level

increases from 0 to 1.

Scale: RNS-CKKS encodes a vector of raw data into

a plaintext cyclotomic polynomial [28] and encrypts the

plaintext to a ciphertext using RLWE. More precisely, RNS-

CKKS encodes a real number as an integer (representing the

significand) with a scale (representing the decimal position).

Then RNS-CKKS encrypts the integer as a ciphertext and

stores the scale as its property. As shown in Fig. 1, coefficient

modulus Q represents an (initial) maximum scale capacity of a

ciphertext. On multiplication of two ciphertexts with the scales

of m1 and m2, the scale of the resulting ciphertext increases

to m1m2.

RNS-CKKS requires that the scale remains less than Q
(Constraint 1). Otherwise, the scale overflow leads to a

corrupted, unrecoverable result. To avoid the overflow (and to

use smaller Q), RNS-CKKS provides a rescale operation

that reduces the scale of a ciphertext by predefined rescaling

factor Sf , as shown in Fig. 1. In this sense, Q is represented

as a product of small prime moduli Sf . On the other hand,

the scale (after rescaling) should be larger than the minimum

scale called waterline (Constraint 2). Otherwise, a message

component (beyond an error) will lose its least significant bits

and may be corrupted in the worst case.

Level: Each rescale operation consumes a modulus Sf .

The rescaling level of a ciphertext indicates the number of

consumed Sf , growing from zero and to logSf
(Q). RNS-CKKS

requires that the operands of multiplication and addition be at

the same level (Constraint 3). To manage the level, RNS-CKKS

provides a modswitch operation that consumes Sf without

affecting the scale, and thus increases the level. If the level

does not match between two operands, programmers should

insert modswitch (or rescale) operations to adjust the level

of ciphertexts.

In sum, Table I summarizes the semantics of the rescale

and modswitch operations. In RNS-CKKS, each ciphertext is

associated with two properties: scale and level. The rescale

and modswitch operations should be (manually and correctly)

used to meet the three constraints on the properties:

• (C1) The scale of a ciphertext should be less than coefficient

modulus Q;

• (C2) The scale should be larger than waterline to avoid

message corruption; and

TABLE I
FHE SCALE MANAGEMENT OPERATIONS CHANGE SCALE j AND LEVEL k.

Sf : RESCALING FACTOR. Sw : WATERLINE.

Scale Mgmt. Operator Scale j Level k

rescale j/Sf (reduce) k + 1
modswitch j (no change) k + 1

downscale (new) Sw (reduce) k + 1

• (C3) The level of operands of multiplications and additions

should be the same. (The addition also requires the same

scale operands.)

B. EVA: The State-of-the-Art FHE Compiler

To ease programmers’ burden, FHE compilers [18]–[21]

(for RNS-CKKS) have been proposed. Among them, the

most recently proposed compiler, Encrypted Vector Arithmetic

(EVA) [19] introduces two new concepts: waterline rescaling

and rescale chain, to offer automatic scale management and

parameter selection.

First, EVA automatically places rescale as needed to keep

the scale of a ciphertext less than coefficient modulus Q (C1),

yet does so only when the rescaled scale remains higher than the

waterline (C2). In EVA, the waterline is set to be the maximum

scale of input ciphertexts. In other words, EVA attempts to

ensure that the scales of intermediate and result ciphertexts

always remain higher than the scales of input ciphertexts.

Second, EVA proposes the concept of rescale chain to satisfy

the constraint (C3) that the operands of binary operations must

be at the same level. The rescale chain encodes the sequence of

rescale and modswitch operations from the root ciphertext

to the target ciphertext. Since the rescale and modswitch

operations increase the level of a result ciphertext, the number

of the operations in a rescale chain represents the level of

the ciphertext. EVA tracks the levels of ciphertexts along the

rescale chains to satisfy the constraint (C3).

Figure 2a illustrates how EVA manipulates the scale of

ciphertexts for example code that computes (x2 + y2)3. Since

the input scale is 220, EVA sets the waterline to be 220.

Multiplication such as x2 and y2 increases its scale to the

product of the scales of its operands while addition keeps

the same scale. Since the scale of z2 becomes 280 whose

rescaled value 220 become larger than the waterline, EVA

places a rescale operation, which reduces its scale to 220

and increases its level to 1. Since z3 is the multiplication result

of z2 and z, and the level of the operands are different, EVA

inserts a modswitch operation to increase the level of z to 1.

C. Motivation: Limitations of EVA

We discuss three limitations of EVA’s scale management

scheme, leading to suboptimal FHE performance.

Limitation 1: A reactive fixed-factor scale management.

EVA’s waterline rescaling scheme places a rescale operation

if the scale remains larger than the waterline (Sw) after rescaling

(to meet C1 and C2 constraints). EVA’s rescaling is reactive

in the sense that it reduces the scale after a multiplication

increases the scale of the resulting ciphertext. Moreover, since

the rescale operation reduces a scale only by the fixed factor

Sf , EVA can insert the rescale operation only after the

scale is larger than SfSw, thus losing a proactive optimization

opportunity. We later show that with the new rescaling operator

which can proactively change a scale by an arbitrary amount,

thus enabling more efficient scale management.

Limitation 2: A separated scale and level analysis. To

meet both the scale (C1&C2) and level (C3) constraints,

EVA employs a separated two-phase approach. EVA first

performs waterline rescaling, placing rescale operations.

Given the code instrumented with rescale operations, EVA

then places modswitch operations as needed. In other words,

EVA determines the scale first to meet the scale constraints, then

adjusts the level separately to meet the level constraint. We later

show that considering both scale and level holistically opens

up a new scale management opportunity, and an FHE compiler

can explore more optimal scale management alternatives.

Limitation 3: A performance-oblivious scale manage-

ment. Given the assumption that the fixed-factor rescale

is the only rescaling operator, the lower scale leads to better

performance, and thus EVA solely focuses on reducing the

scale. However, we later show that when a flexible rescaling

becomes available, the lower scale does not always improve

the performance. The cost of an FHE operation decreases as

the rescaling level increases (e.g., level 1 multiplication is

2.25× faster than level 0 multiplication). To achieve better

performance, an FHE compiler should consider an alternative

scale management option that may lead to a higher scale yet

allow more computations to be performed at a higher level.

III. OVERVIEW OF HECATE

This work presents HECATE, a new FHE compiler, which

supports performance-aware scale management of RNS-CKKS

applications. HECATE enables performance-aware scale man-

agement by introducing (1) a new scale management operator

called downscale and a new proactive rescaling scheme; (2)

a new type system that analyzes scale and level together;

(3) a new scale management space exploration (SMSE) with

performance estimation.

Solution 1: A proactive flexible-factor scale manage-

ment. HECATE introduces a new rescaling operator called

downscale that can adjust the scale of a ciphertext by an

arbitrary amount. Table I shows the semantic of downscale

operation, which reduces the scale of a ciphertext exactly to the

waterline (Sw) and increases the level by one. The downscale

operation enables proactive scale management. Unlike EVA’s

waterline rescaling that reactively reduces the scale after a

multiplication, HECATE can proactively downscale the scale of

a ciphertext before a multiplication. For instance in Fig. 2a, to

multiply the level one z2 (after rescaling) and the level zero z,

EVA introduces modswitch and increases the level of z. After

the multiplication, the scale of z3 becomes 260. In Fig. 2b,

HECATE uses downscale before the multiplication, reducing

the scale of z to the waterline 220. In the end, the scale of z3

becomes 240 that is lower than EVA.

80

70

60

50

40

30

20

10

0

scale

t

x
L0

y
L0

x2

L0

z2

L0

z2

L1

z3

L1

z
L1

y2

L0

z
L0

Waterline: 20

rescaling

modswitch

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

(a) Existing HE compiler (EVA)

80

70

60

50

40

30

20

10

0

scale

t
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Waterline: 20

x
L0

y
L0

x2

L0

z
L0

z2

L0

z2

L1

z3

L1

y2

L0

z
L1

downscale

rescaling

(b) Proactive rescaling (PARS)

80

70

60

50

40

30

20

10

0

scale

t
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

x
L0

y
L0

x2

L0

z
L0

z2

L1

z3

L1

y2

L0

z
L1

downscale

Waterline: 20

(c) Scale management space explorer (SMSE)

Fig. 2: Comparison of the scale management schemes of EVA and HECATE for the example program which calculates (x2 + y2)3 which is a part of root
mean square. rescale reduces the scale by 260, and increases the level by one. modswitch only increases the level, and downscale reduces the
scale to the waterline while increasing its level.

Scale Mgmt Unit Gen (§Ⅴ)

Scale Management Space Explorer

Performance Estimator (§Ⅵ-C)

Scale Mgmt Code Gen (§Ⅵ-B)

HECATE IR Gen (§Ⅳ)

%x

%y

%x2

%y2
%z2 %z3%z

id:0 id:1 id:2 id:3 id:4

%x2 = mul %x, %x

%y2 = mul %y, %y

%z = add %x2, %y2

%z2 = mul %z, %z

%z1 = downscale %z

%z21 = rescale %z2

%z3 = mul %z21, %z1

return %z3

%x2 = mul %x, %x

%y2 = mul %y, %y

%z = add %x2, %y2

%z1 = downscale %z

%z2 = mul %z1, %z1

%z3 = mul %z2, %z1

return %z3

def rms(x, y):

x2 = x*x

y2 = y*y

z = x2+y2

z3 = z*z*z

return z3

Unit cost (b) (c)

𝑙𝑒𝑣𝑒𝑙 0 mul 5 3 2

𝑙𝑒𝑣𝑒𝑙 0 add 1 1 1

𝑙𝑒𝑣𝑒𝑙 1 mul 2 1 2

Rescale 2 1 0

Modswitch 2 0 0

Downscale 2 1 1

Total cost 22 17

Planner (§Ⅵ-A)

(0,1):0,(1,2):0

(2,3):0,(3,4):0

(2,4):0

(0,1):0,(1,2):0

(2,3):1,(3,4):0

(2,4):1

Plan c

SEAL Dialect

LLVM IR

%x2 = mul %x, %x

%y2 = mul %y, %y

%z = add %x2, %y2

%z2 = mul %z, %z

%z3 = mul %z2, %z

return %z3

HECATE Compiler
Python frontend

Plan bPlan b Plan c

Fig. 3: Design of the HECATE framework. The example code uses the same
program with Fig. 2. Plan (b) and (c) are matched with Figures 2b and 2c.

Solution 2: A new type system for scale and level

management. HECATE proposes a new type system that

analyzes the scale and the level of a ciphertext together to

enable better scale management. Unlike EVA, which adjusts the

scales first and addresses the level differences later, HECATE

considers the scale and level holistically to explore various

scale management options.

For the same (x2 + y2)3 computation, Fig. 2c illustrates yet

another scale management option in which downscale is used

even before the very first multiplication of z ∗ z ∗ z, where

z = (x2 + y2). The three scale management options in Fig. 2

demonstrate that different ways of using rescale, modswitch,

and downscale may lead to different accumulative scales (and

even the performance) The type system allows HECATE to

safely explore the scale management space while obeying the

RNS-CKKS constraints (C1-C3).

Solution 3: A new scale management space exploration

(SMSE) with performance estimation. To achieve better

performance, HECATE automatically explores the scale man-

agement space, determining where and which one of rescale,

modswitch, and/or downscale to place. As the exploration

space could be huge for large FHE applications, HECATE

performs static analysis to identify scale management units

where the scale and level can be managed together so that the

scale management operators do not need to be placed in the

middle of a unit. HECATE explores the scale management space

by the hill-climbing method. Given the scale management units,

HECATE constructs scale management plans by changing one

step from the previous iteration. Then it generates FHE codes

with scale management operators, which meet the constraints

(C1-C3). Finally, it estimates the performance of each plan.

The one with the best-estimated performance is passed to the

next iteration until the hilltop is reached.

Fig. 2c shows the scale management plan that is estimated

to perform the best. Note that the plan (c) has the accumulative

scale of 260 higher than the plan (b). However, the early

introduction of downscale allows the two multiplications of

z ∗z ∗z (where z = (x2+y2)) to occur all at level one (instead

of zero in the plan (b)), leading to better performance.

Overview. Fig. 3 shows the design of the HECATE frame-

work. We build HECATE on the top of MLIR [22] for

extensibility: to support various frontends (e.g. ONNX-MLIR,

NumPy) and backends (other than SEAL) in the future.

HECATE provides Python frontend to write an FHE program

easily. HECATE IR generator produces the program written

in HECATE IR (§IV) from the program written in Python

frontend. Then, HECATE generates scale management units

(§V). To explore the scale management space with the hill-

climbing method, the planner (§VI-A) produces a set of next

plans to explore from the best plan of the previous iteration.

Given the plans HECATE generates correct and fast FHE codes

considering the RNS-CKKS constraints (§VI-B). Finally, the

performance estimator (§VI-C) calculates the estimated cost

of the generated codes for the next iteration. For the final FHE

code, HECATE provides SEAL dialect which represents the

backend of an FHE program and optimizes memory usage by

analyzing the liveness.

Prg ::= F

F ::= func fid (v : T) {s; e}
s ::= v := e | s; s

e ::= homomorphic | opaque

homomorphic ::= c | v | e⊕ e | − e | rotate (e, i)

opaque ::= rescale (e) | modswitch (e) |

upscale (e, i) | downscale (e)

⊕ ::= + | ×

T ::= free | scaled (j, k)

scaled ::= cipher | plain

v ∈ variables, c ∈ constants, i, j, k ∈ Z
+, fid : function id

Fig. 4: The formal syntax of HECATE IR. The syntax with gray box shows
additional syntax for HECATE IR over its language. A means a list of A.

IV. HECATE IR AND TYPE SYSTEM

This section describes HECATE’s intermediate representation

(IR) (§IV-A) and scale/level-aware type system (§IV-B).

A. HECATE Intermediate Representation (IR)

Fig. 4 presents the formal syntax of IR that HECATE compiler

uses for scale management and type system. HECATE compiler

takes as input an HE program written in Python language and

compiles it down to HECATE IR. The syntax with a gray box

represents HECATE’s scale management operations that do not

appear in the input program.

HECATE IR defines a function with typed arguments (T).

Expressions in HECATE IR are classified into homomorphic

and opaque expressions. Homomorphic expressions have the

same semantics as their homomorphic counterparts. By the

homomorphism of HE, the program should produce the same

result when we change every ciphertext and its operations to

plaintext and its homomorphic counterpart operations. An input

program includes homomorphic expressions only.

On the other hand, opaque operations do not have a

homomorphic counterpart. They only affect the data and

properties of a ciphertext for scale management operations and

the type system. The rescale and modswitch operations are

directly mapped to the scale management operations in the

RNS-CKKS scheme. The upscale (e, i) operation is syntactic

sugar for multiplying one with an arbitrary scale to increase

the scale of e by i without changing the level.

HECATE introduces the new downscale (e) operation

which reduces the scale of e to the waterline (Sw). HECATE

implements the downscale operation by (1) multiplying the

target ciphertext of scale j with a plaintext filled with 1 of

scale Sf ∗ Sw/j (increasing the scale to Sf ∗ Sw) and (2)

applying the rescale operation (reducing the scale to Sw and

increasing the level by one). Table I summarises the effects of

the scale management operations on the scale and the level.

B. HECATE Type System

HECATE IR uses Type T , representing the scale and level

of a value. The type system allows HECATE to consider both

Γ ⊢ e1 : cipher (j, k) Γ ⊢ e2 : scaled (j′, k)

Γ ⊢ e1 × e2 : cipher (j ∗ j′, k)
(1)

Γ ⊢ e1 : cipher (j, k) Γ ⊢ e2 : scaled (j, k)

Γ ⊢ e1 + e2 : cipher (j, k)
(2)

Γ ⊢ e : cipher (j, k) j/Sf > Sw

Γ ⊢ rescale (e) : cipher (j/Sf , k + 1)
(3)

Γ ⊢ e : scaled (j, k)

Γ ⊢ modswitch (e) : scaled (j, k + 1)
(4)

Γ ⊢ e : scaled (j, k) j′ > j

Γ ⊢ upscale (e, j′) : scaled (j′, k)
(5)

Γ ⊢ e : cipher (j, k) j < Sw · Sf

Γ ⊢ downscale (e) : cipher (Sw, k + 1)
(6)

Fig. 5: Parts of HECATE type system.

scale and level during scale management and to produce a

correct FHE program obeying the RNS-CKKS constraints.

The free type represents a message that is not encoded or

encrypted. The plain type represents a plaintext encoded

but not encrypted. The cipher type represents a ciphertext

encoded and encrypted. Both plain and cipher types have

the scale j and level k properties. We refer to plain and

cipher types with these properties as a scaled type because

HE allows computation between plaintext and ciphertext.

Homomorphic operations. Homomorphic operations take

an effect on the plain counterpart of the HE program. Binary

operations between cipher type and scaled type operands

have complex rules because of their constraints on the scale

and level properties of the operands. For multiplication (Eq. 1),

the level of the operands should be the same and the result

scale becomes a product of scales of the operands. For addition

(Eq. 2), the level and scale of the operands should be the same

and also the result scale remains the same.

Scale management operations. The opaque scale manage-

ment operations change the scale and level of the HE program.

Eq. 3 describes the typing rule for the rescale operation,

which only takes a cipher type operand. A free type operand

does not have a scale. A plain type operand is only generated

from the free type which does not decrease a scale. Thus,

both do not need rescaling. A rescale operation reduces

scale of an operand by a fixed factor Sf . The level increases by

one. Because the waterline denotes the minimum required scale

of ciphertext, HECATE allows rescaling only if the scale of

ciphertext j/Sf is larger than the waterline Sw. A modswitch

operation takes a scaled type operand and increases only the

level of ciphertext without affecting the other properties, as

shown in Eq. 4. As described in Eq. 5, an upscale operation

takes as operands a scaled type expression and the desired

scale in integer. This operation is syntactic sugar that multiplies

plaintext filled with 1 which has j′/j scale. As in Eq. 6, a

newly proposed downscale operation takes only a cipher

type operand like the rescale operation, reduces the scale

of ciphertext to the waterline, and increases the level by one.

Algorithm 1: Scale management unit analysis

Input: Func: Function of an HE application
Output: Group: Mapping from an ciphertext to SMU

1 Function ScaleMgmtUnitGrouping (Func) :
2 Group ← {}
3 MergeDef ← {} // Definition-aware Merge Step
4 foreach (op, arg0, arg1, res) ∈ Func.getBody() do
5 G ← Group.insert(res)
6 G0 ← Group[arg0], G1 ← Group[arg1]
7 if op ∈ {+p} ∨ (op ∈ {+c} ∧ G0 = G1) then
8 Group.merge(G, G0)
9 else

10 def ← (op, G0, G1)
11 if def ∈ MergeDef then
12 Group.merge(G, MergeDef[def])
13 else MergeDef[def] ← G
14 end
15 OpSplitDef ← {} // Operation-aware Split Step
16 foreach G ∈ Group do
17 foreach (op, arg0, arg1, res) ∈ G do
18 Gres ← Group.split(G, res)
19 def ← (op, G)
20 if def ∈ OpSplitDef then
21 Group.merge(Gres, OpSplitDef[def])
22 else OpSplitDef[def] ← Gres
23 end
24 end
25 UserSplitDef ← {} // Use-aware Split Step
26 foreach G ∈ reverse(Group) do
27 foreach (op,arg0,arg1,res) ∈ G do
28 Gres ← Group.split(G,res)
29 Guse ← {}
30 foreach user ∈ res.getUsers() do
31 Guse ← Group[user]
32 end
33 def ← (G, Guse)
34 if def ∈ UserSplitDef then
35 Group.merge(Gres, UserSplitDef[def])
36 else
37 UserSplitDef[def] ← Gres
38 UserSplitDef[(G, Gres] ← Gres
39 end
40 end
41 end

Because downscale is done by upscale and rescale, it does

not have meaning when rescale is possible. The type system

only allows downscale when rescale cannot be applied.

V. SCALE MANAGEMENT UNIT GENERATOR

For scale management space exploration, HECATE analyzes

a HECATE IR program and generates scale management units

within which the scale and level can be managed together,

reducing the search space. Algorithm 1 presents HECATE’s

three-phase scale management unit analysis algorithm with

a custom Group data structure. Group.insert(res) adds and

returns a new set which can be indexed from “res”. Group[v]

finds a corresponding set from a value v. Group.merge(A,

B) merges sets A and B while keeping the key of A.

Group.split(A, v) splits and returns {v} from A.

The first definition-aware merge step (Lines 4-14) performs

a forward program analysis and groups a set of values sharing

x y

𝑥! 𝑦!

𝑥! + 𝑦!

𝑥! + 𝑦! 𝑧id:3

id:2

id:1 z

(a) Def.-aware merge

𝑥! 𝑦!

𝑥! + 𝑦!

𝑥! + 𝑦! 𝑧id:3

id:4

id:2

id:1 x y z

(b) Op.-aware split

𝑥! 𝑦!

𝑥! + 𝑦!

𝑥! + 𝑦! 𝑧id:3

id:4

id:2

id:1 x y zid:5

(c) User-aware split

Fig. 6: Scale management unit analysis example for (x2 + y2)z

the same scale and level into the same unit. A plaintext addition

(+p) does not change the scale and level of a ciphertext.

A ciphertext addition (+c) does not alter them, if the two

operands have the same scale and level. For the above two cases

(Lines 7-9), HECATE puts the resulting plaintext/ciphertext

and the operands in the same unit. On the other hand, for a

ciphertext addition with the operands at different scales/levels

that require a scale management operation, and a ciphertext

multiplication that changes the scale of resulting ciphertext,

HECATE introduces a new scale management unit if there is

no previous case with the same operator and operand group

combination (Lines 10-13). For the example in Fig. 6a, the

definition-aware merge step puts (x2, y2, and x2+y2) with the

same scale/level into one unit. The next operation (x2 + y2)z
increases the scale, so it goes to another unit.

The second step (Lines 16-24) splits the scale management

units constructed by the first step into smaller units based on

the operation type (See Line 19 that uses op as a key). The

second split step tries to split the multiplication prefix from

the rest non-multiplication suffix. The rationale behind this

split pass is that the prefix multiplications always generate

the result with a scale larger than Sw
2, so there is room for

proactive scale management. As the scale of multiplication

operand is larger than Sw, the scale of the prefix multiplication

is always larger than Sw ∗Sw. For the same example in Fig. 6a,

since the first two operations are mul and the third is add, the

operation-aware split step splits the unit (x2, y2, and x2 + y2)

into two units (x2, y2) and (x2 + y2), as shown in Fig. 6b.

The last user-aware split step (Lines 26-40) further partitions

the scale management units. If ciphertexts are used with

different scales and levels, it is worth considering different

scale management plans for them. This step analyzes how

each ciphertext is “used” in a backward way, and places

ciphertexts used in different units separately. In the same

example in Fig. 6b, the use of x and y is x2 and y2; and

the use of z is (x2 + y2)z. The third step splits (x, y) and (z).

Fig. 6c shows the final scale management units.

VI. SCALE MANAGEMENT SPACE EXPLORER

As shown Fig. 3, HECATE’s Scale Management Space Ex-

plorer (SMSE) consists of three components: scale management

planner (§VI-A), code generator (§VI-B), and performance

estimator (§VI-C).

A. Scale Management Planner

The planner takes as input scale management units (§V)

and the best plan in a previous iteration and produces a set of

new scale management plans. Each management plan maps

an edge between scale management units to an optimization

degree, representing the number of additional scale management

operations such as rescale, downscale, and modswitch.

The planner produces new scale management plans using

the steepest ascent hill-climbing method. Given the best plan

from the previous iteration, the planer generates a set of new

plans by increasing the optimization degree by one at each

different location. Suppose a program consists of three scale

management units 0, 1, and 2 with two edges (0,1) and (1,2).

Given the best plan {(0, 1): 1, (1, 2): 0}, the new plans are:

{(0, 1): 2, (1, 2): 0} and {(0, 1): 1, (1, 2): 1}. In other words,

the planner attempts to introduce one more scale management

operation than the prior iteration.

Each plan gives (a) the locations to place scale management

operations and (b) the numbers of operations to place. Given

a scale management plan, the planner determines (c) the type

of scale management operations to place, based on the scale

of an operand. If the scale is larger than the waterline after

rescale, the planner applies rescale to the operand. If

rescale cannot be applied but the scale can be reduced by

downscale, the planner applies downscale. In the other case,

modswitch is applied. Because this algorithm needs the scale

information of the operand and should meet the RNS-CKKS

constraints, the planner uses the proactive rescaling algorithm

(PARS, Algorithm 2), described in the next section, to generate

the correct FHE codes.

B. Scale Management Code Generation

Algorithm 2 describes how HECATE inserts scale manage-

ment operations. HECATE greedily reduces the cumulative scale

of each ciphertext. The key idea is to apply a scale management

operation to minimize the cumulative scale of operands for

each operation, leading to the minimum cumulative scale of the

result of that operation. The algorithm consists of five steps: (a)

encode, (b) rescale analysis, (c) level match, (d) scale match,

and (e) downscale analysis. Additionally, HECATE applies

early modswitch optimization of EVA to move modswitch to

the earlier position.

(a) Encode. This step specifies the scale of a free type

operand of binary expressions. If an operand is free-type,

HECATE transforms it to plain-type with the waterline Sw.

(b) Rescale analysis. This step rescales the operands of each

operation if the new scale remains larger than the waterline. The

rescale operation reduces the scale from j to j/Sf , given a

rescale factor of Sf . Thus, if the new scale is larger than the

waterline Sw: i.e., j > SwSf , HECATE inserts rescale to

reduce the scale of an operand in binary expressions (Line 9-

10). This transformation can be commutatively and recursively

applied to generate the minimal scale as long as the waterline

is ensured.

(c) Level match. This step satisfies the level constraint of

binary expressions: i.e., the levels of two operands should

Algorithm 2: Proactive rescaling algorithm (PARS)

Parameter :Sf : Rescale Value
Parameter :Sw: Waterline Value
Input: Op: The operation type of HE operation.
Input: arg0, arg1: Argument ciphertext of an HE operation.
Input: res: Result ciphertext of an HE operation.

1 Function PARS (op, arg0, arg1, res) :
2 // (a) Encode
3 if op ∈ {+,×} then
4 // Without Loss of Generality
5 if arg0.type = free then
6 arg0.type ← plain (arg0, Sw)
7 // (b) Rescale Analysis
8 // Without Loss of Generality
9 if arg0.scale > Sw · Sf then

10 arg0 ← rescale (arg0)
11 // (c) Level Match
12 // Without Loss of Generality
13 if op ∈ {+,×} ∧ arg0.level < arg1.level then
14 if arg0.scale = Sw then
15 arg0 ← modswitch (arg0)
16 else if arg0.scale > Sw then
17 arg0 ← downscale (arg0)
18 // (d) Scale Match
19 // Without Loss of Generality
20 if op ∈ {+} ∧ arg0.scale < arg1.scale then
21 arg0 ← upscale (arg0, arg1.scale)
22 // (e) Downscale Analysis

23 if op ∈ {×} ∧ arg0.scale * arg1.scale > S2
w · Sf then

24 arg0 ← downscale (arg0)
25 arg1 ← downscale (arg1)
26 end

be the same. If the scale of the smaller level operand is the

waterline, HECATE inserts modswitch to increase the level of

the operand as EVA does (Line 14-15). If the waterline Sf

is less than scale j as well, If not, HECATE uses downscale

to minimize the scale while increasing the level (Line 16-17).

Note that after steps (a) to (c), HECATE guarantees that two

operands of every binary expression have the types with the

same level: i.e., (j, k) and (j′, k).

(d) Scale match. This step satisfies the scale constraint

of add operations: i.e., the scale of two operands should be

the same. To match the scale, HECATE inserts the upscale

operation to the operand with a smaller scale.

(e) Downscale analysis. The last step is to analyze if apply-

ing downscale on two operands of multiplication is beneficial.

Give two operands of types scaled (j, k) and scaled (j′, k)
for multiplication (after steps (a) to (d)), there are two possible

ways to manage the scale of the multiplication. One method

is to simply multiply them first, and then apply downscale.

The type of the result becomes (jj′/Sf , k+1). An alternative

method is to apply downscale on both operands and then to

multiply them. In this case, after downscale, the types of two

operands will be (Sw, k+1) and (Sw, k+1), respectively. After

the multiplication, the type of the result becomes (S2

w, k + 1).
HECATE applies downscale if jj′/Sf > S2

w (Line 23-25).

TABLE II
RMS ERROR OF THE PROGRAMS

Benchmark EVA PARS SMSE HECATE

SF 9.738E-04 3.799E-03 2.503E-04 3.680E-03
HCD 3.313E-03 1.675E-03 8.102E-04 3.265E-03
MLP 4.634E-04 6.040E-05 5.521E-05 3.257E-04
Lenet 1.126E-03 2.584E-04 5.004E-04 2.183E-03
LR E2 2.296E-04 1.654E-04 6.493E-06 2.525E-03
LR E3 2.742E-05 1.784E-03 7.107E-08 2.716E-04
PR E2 3.266E-03 1.748E-04 7.566E-04 1.333E-03
PR E3 1.721E-04 5.713E-04 2.613E-03 1.788E-03
Gmean 5.271E-04 4.823E-04 9.195E-05 1.390E-03

C. Performance Estimator

The performance estimator statically estimates an expected

execution time of a HECATE IR program. Dynamically execut-

ing all candidate programs easily becomes too expensive. The

latency of an FHE operation in RNS-CKKS is determined by

the level of the operands and the polynomial modulus N . The

time complexity of the operation is linear or quadratic to the

level of the operands, and linear or log-linear to N , depending

on the operation type. Based on the observation, we profile

the execution time of each FHE operation at different levels

and N . as in Fig. 3. Given the profiled per-level latency of

each FHE operation, the performance estimator can estimate

the total execution time of a HECATE IR program. For each

operation, the level information is readily available thanks to

the HECATE’s type system.

VII. EVALUATION

A. Experimental Setup

For performance evaluation, this work compares the perfor-

mance of HECATE with the state-of-the-art EVA [19] using a set

of benchmarks. HECATE employs proactive rescaling (PARS,

§VI-B) and scale management space exploration (SMSE, §VI).

Thus, this work also evaluates the benefits of an individual part.

In sum, this work considers four different scale management

schemes:

• EVA uses the fixed-factor scale management and the water-

line rescaling algorithm. These two components of EVA are

reimplemented on top of the HECATE framework.

• PARS uses the proactive rescaling scheme but does not use

the scale management space exploration.

• SMSE uses the scale management space exploration but

does not use the proactive rescaling. Instead, it uses EVA’s

waterline rescaling algorithm.

• HECATE uses both proactive rescaling and scale manage-

ment space exploration.

For benchmarks, we implemented and tested the following

six applications. We tested the same benchmark set (except

SqueezeNet) used in EVA and CHET (e.g., LR, SF, LeNet).

We additionally tested MLP.

• Sobel Filter (SF) is a classic edge detection algorithm,

which calculates the variation of an image in the vertical

and horizontal directions using 3× 3 image gradient filters.

0

0.2

0.4

0.6

0.8

1

SF HCD ML P Lenet LR E2 LR E3 PR E2 PR E3 Gmean

L
at

en
cy

 (
N

o
rm

ar
li

ze
d

to
 E

V
A

)

EVA PARS SMSE HECATE

Fig. 7: Performance of 8 benchmarks with different scale management schemes:
Sobel Filter, Harris Corner Detection, Multi-layer Perceptron, LeNet-5, Linear
Regression and Polynomial Regression,. This work executes regression
benchmarks with two and three epochs (denoted as E2 and E3).

• Harris Corner Detection (HCD) detects corner points of

an image. HCD calculates the difference of pixels in the

window and detects corner points.

• Multi-layer Perceptron (MLP) is a feed-forward neural

network for image classification. This benchmark uses

784×100 and 100×10 layers with square activation.

• LeNet-5 is a convolutional neural network for image classifi-

cation. This benchmark uses the network presented in [29],

modifying the output channel of the second fully connected

layer to 64 and activation function to square function.

• Linear Regression (LR) models the relationship between

a dependent variable and independent variables by fitting a

linear equation for given input data.

• Polynomial Regression (PR) is one of the regression

methods for nonlinear data using the n-th degree polynomial

equation. This work uses the quadratic equation.

This work uses Microsoft SEAL (Release 3.5.9) and conducts

all the experiments with Intel(R) Core(TM) i7-8700 CPU @

3.20GHz CPU with 6 physical cores and 64GB RAM. This

work sets the security level as 128-bit for all the experiments.

With the software and hardware specification, this work writes

the benchmarks assuming a packed ciphertext with 214 slots.

The image processing benchmarks only use 4096 pixels of 64

× 64 images, the regression benchmarks use 16384 randomly

generated inputs for each variable, and the deep learning

benchmarks use a random input from the MNIST dataset. This

work uses the gradient descent algorithm for the regression

benchmarks with 2 and 3 epochs.

B. Performance Evaluation

Figure 7 shows the minimum latency of each benchmark

when setting the maximum error bounds as 2−8. For all the

schemes, this work tries 36 different waterlines and finds the

best waterline in terms of latency among the cases that do

not exceed the maximum error bound. The exact root-mean-

square error of the compiled program is presented in Table II.

Note that smaller error does not imply a better exploration

TABLE III
SEARCH SPACE REDUCTION. (USES: # OF USES, SMU: # OF SCALE

MANAGEMENT UNITS, EPOCH: # OF EXPLORATION ITERATIONS, PLAN: # OF

EXPLORED SPACES)

Bench
marks

uses SMU
Naive Hecate Reduction

Ratio
epoch plan epoch plan

SF 91 19 5 1093 5 229 4.773
HCD 164 19 34 16237 7 343 47.34
MLP 575 12 2 1726 2 37 46.65
Lenet 11735 48 43 1.48E6 6 721 2050
LR E2 186 44 13 6697 10 1189 5.632
LR E3 278 66 12 9175 11 1981 4.631
PR E2 284 71 13 10225 10 1918 5.331
PR E3 424 106 18 21625 12 3499 6.180

because it means there is no better optimization option found

that sacrifices the precision to get better performance.

The evaluation results show that HECATE can enhance the

performance of various HE applications with PARS and SMSE.

Performance improvement from PARS and SMSE is 13.38%

and 21.36% on average, respectively. Overall performance

improvement of HECATE is 27.85% on average.

Speedup of PARS. Although PARS always achieves a

smaller cumulative scale which defines the initial level of the

program, PARS does not always show the speedup over EVA.

For SF, HCD, and Lenet, PARS improves the performance

by reducing the cumulative scales and their initial levels of

ciphertexts. However, PARS does not improve the performance

of MLP, LR E2 and E3, and PR E2 and E3 because their

cumulative scale reduction does not exceed a program-specific

tipping point of level reduction, and thus their initial levels of

ciphertexts are not reduced. PARS averagely shows 13.38%

speedup over EVA on average.

Speedup of SMSE. SMSE always shows the speedup over

EVA. Because SMSE rejects the optimization plan when the

estimated latency is slower than the previous plan, it is clear

that SMSE always introduces the speedup if the performance

estimation is accurate. As described in §VII-D, the estimation

is accurate enough to explain the 21.35% speedup of SMSE.

However, SMSE shows a little speedup on SF, MLP, and LR

E3. Other schemes also do not achieve meaningful speedup on

MLP and LR E3 which implies that EVA already finds good

parameters for the program. For SF, its number of SMU edges

is smaller than others, thus limiting scale management space.

Since the impact of SMSE is limited, its performance speedup

largely relies on the code generation scheme such as PARS.

Speedup of HECATE. HECATE is superior to the other

optimization schemes. For SF, HCD, and LR E3, HECATE

achieves synergistic performance improvement by using both

SMSE and PARS. Results of LR E2, PR E2, and PR E3

show how code generation can affect the speedup of HECATE.

Although solely using PARS does not improve the performance

of the benchmarks, HECATE achieves better latency than SMSE

with waterline rescaling, because the code generation can affect

the effectiveness of the optimization plan. The result of Lenet

shows the impact of SMSE. Not surprisingly, SMSE can add the

downscale operation on the proper place and may optimize

y = 0.9884x + 11.175

R² = 0.9999

200

2000

20000

200000

200 2000 20000 200000

A
ct

u
al

 l
at

en
cy

 (
m

s)

Estimated latency (ms)

Fig. 8: Comparison between estimated and actual latencies. The comparison
plots the data of 1152 different settings that uses 36 different waterlines for 8
benchmarks and 4 optimization schemes. The maximum relative error is 4.8%

the same places that PARS optimizes. Thus, even with waterline

rescaling, SMSE can find a similar scale management plan like

HECATE. On average, HECATE shows the best performance

speedup of 27.85%.

Hecate achieves a meaningful performance improvement via

compiler-only optimizations (without additional hardware nor

algorithmic change). Our optimization can be synergistically

applied and further improve the performance of recent hardware

acceleration schemes such as HEAX [30].

C. Search Space Reduction

This section demonstrates how the scale management unit

generation reduces the search space. Without scale management

unit generation, the optimization plan should be applied to every

use of the ciphertexts in a program. The number of explored

plans is increased not only by the number of the edges, but

also by the epoch of the hill-climbing algorithm. To analyze

how effectively scale management unit generation reduces the

exploration space of SMSE, this work implements a naı̈ve

exploration scheme that explores scale management plans with

the same hill-climbing algorithm but without scale management

units. Thus, the naı̈ve scheme directly uses use-def edges in

the program.

Table III shows the comparison results of the naı̈ve scheme

and HECATE. For SF and MLP, using SMU does not reduce

the number of epochs, which means the optimized plan only

operates on a single-use SMU edge. However, these benchmarks

take advantage of the reduction of the number of units. SMU

generation of HECATE slightly reduces the number of the epoch

of the regression benchmarks such as LR E2, LR E3, PR E2,

and PR E3. The regression benchmarks have a few parallel

operations that can share the schedule, so the reduction of the

epoch is small. For Lenet and HCD, the epochs are dramatically

reduced because the benchmark exposes the parallel operations

a lot. The result of Lenet shows that the SMU scales well with

the size of the program. The compilation time depends on the

number of iterations during SMSE. Thanks to the proposed

search space reduction (Table III), the longest compilation time

of HECATE only takes 340 seconds compared to the 649 hours

of the naı̈ve scheme.

D. Performance Estimation

Performance estimation largely affects the optimization of

SMSE. As shown in Fig. 8, the estimated latency of various

settings is almost identical to the actual latency of the compiled

program. The geometric average of relative error is 1.3%

and the maximum error is 4.8%. This result shows that the

simple estimation explained in §VI-C is sufficient for SMSE.

Inherently, the latency of each HE operation has a very small

variance, because HE operations execute long regular loops

enough to reduce the variance on the latency of each iteration

by a statistical effect. The performance characteristic of HE

operations explains why the proposed estimation accurately

estimates the latency.

VIII. RELATED WORK

Previous work [18]–[21], [31]–[37] proposes various lan-

guages and optimizing compilers for HE to enhance the

performance and programmability of HE applications. Sur-

vey [38] on FHE compilers and libraries provides an extensive

survey and experimental evaluation. In general, the existing

languages and compilers hide the complexities of HE schemes

by providing high-level languages or automating encryption

parameter selection. Moreover, the compilers introduce various

optimization techniques for HE applications.

General-purpose HE compilers: Some work [19], [31]–

[35], [39]–[41] supports implementing general-purpose HE

applications either for existing programming languages or with

proposing new programming languages.

The HE compilers for existing programming languages [31]–

[34], [39]–[41] enable programmers to implement HE ap-

plications in a friendly way. Cingulata [39], [40], E3 [33]

and Marble [32] provides open-source compiler and runtime

supports to executing C++ programs over encrypted data.

Lobster [41] is an optimizing compiler for Cingulata, which

optimizes boolean circuits generated by Cingulata through

program synthesis and term rewriting. RAMPARTS [31]

automatically transforms an imperative program in Julia into

an optimized computation circuit for HE, using the PAL-

ISADE [42] library as its back-end. ALCHEMY [34] supports

Haskell front-end and automatically selects suitable parameters.

Additionally, Porcupine [35] proposes a Quill DSL for data

layout optimizations in FHE using program synthesis.

While the compilers either target non-CKKS schemes [9],

[10], [43] only or lack consideration of scale management, this

work focuses on providing optimal scale management for the

state-of-the-art CKKS and RNS-CKKS schemes.

Recently, EVA (Encrypted Vector Arithmetic) [19] intro-

duces a new FHE language, which can be an intermedi-

ate representation for other domain-specific languages. EVA

supports arithmetic operations on fixed-width vectors and

scalars, facilitating encrypted SIMD computations. EVA also

includes an optimizing compiler, which provides FHE-specific

optimizations such as inserting rescale and modswitch

operations optimally. EVA reduces the number of rescale

operations based on the insights that reusing the same rescale

value can lead to smaller encryption parameters.

Similar to EVA, the proposed HECATE framework supports

general-purpose FHE applications with performance-aware

scale management. This work discovers three limitations in

EVA in terms of scale management: a reactive fixed-factor

scale management, separated scale and level analysis and

the performance-oblivious scale management. The HECATE

framework provides better scale management than EVA with a

new operation and type system and a design space exploration

approach for performance-aware scale management.

Domain-specific HE compilers: Other work [18], [20], [21],

[37] targets specific domains like DNN inference.

CHET [18] is an optimizing compiler for homomorphic

DNN inference. CHET includes a domain-specific language for

specifying tensor circuits that implement DNN inference. From

domain-specific information such as the dimensions of input

tensors, CHET transforms an input tensor circuit with FHE

operations. To hide the complexities of FHE schemes, CHET

automates parameter selection and guarantees the security

and accuracy of the target tensor circuit. Furthermore, CHET

provides layout selection and other HE-specific optimizations

to enhance the performance of the target circuit.

nGraph-HE [20], [21] enables homomorphic deep learning

by extending an existing deep learning graph compiler, Intel’s

nGraph [44]. By implementing an HE backend for nGraph,

the compilers facilitate deploying neural network models with

popular deep learning frameworks such as TensorFlow [45]. In

addition, the compilers apply various HE-aware optimizations

like exploiting SIMD operations that HE schemes support.

Especially, nGraph-HE provides a CKKS-specific optimization

called lazy rescaling, which inserts rescale operations only

after fully-connected and convolutional layers.

AHEC [37] supports nGraph and Tensorflow as front-end

and CKKS scheme of SEAL library as a backend. Moreover,

AHEC also provides multiple hardware backend with GPU-

accelerated HE library. AHEC mainly supports automated

kernel generation with vectorization, tiling, and tensor layout

selection. AHEC also provides Tile DSL to describe the HE

kernel and hardware abstraction layer for parallelization.

Since the scale management scheme of HECATE can apply

to the existing domain-specific compilers, the compilers can

further enhance the performance of their target applications by

employing HECATE’s performance-aware scale management.

Scale management of (non-FHE) fixed-point arithmetic:

[46]–[51] optimize the bitwidth of fixed-point numbers and

reduce the complexity of arithmetic operations. However, they

cannot be directly applied to RNS-CKKS without considering

the impact of scale management on performance.

IX. CONCLUSION

This work proposes the HECATE compiler framework that

allows performance-aware scale management with a new

type system, scale management operations including a new

downscale operation, proactive rescaling algorithm, and scale

management space explorer. With the proposed proactive

rescaling and scale management space exploror, HECATE

achieves 27.38% speedup over the state-of-the-art approach.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their valuable

feedback. We also thank the CoreLab members for their

support and feedback during this work. This work is supported

by IITP-2020-0-01847, IITP-2020-0-01361 and IITP-2021-0-

00853 through the Institute of Information and Communication

Technology Planning and Evaluation (IITP) funded by the

Ministry of Science and ICT. This work is also supported by

Samsung SDS. (Corresponding author: Hanjun Kim)

REFERENCES

[1] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D. dissertation,
Stanford, CA, USA, 2009.

[2] ——, “Fully homomorphic encryption using ideal lattices,” in
Proceedings of the Forty-First Annual ACM Symposium on Theory

of Computing, ser. STOC ’09. New York, NY, USA: Association
for Computing Machinery, 2009, pp. 169–178. [Online]. Available:
https://doi.org/10.1145/1536414.1536440

[3] C. Gentry and S. Halevi, “Implementing gentrys fully-homomorphic
encryption scheme,” vol. 6632, 05 2011, pp. 129–148.

[4] J.-S. Coron, A. Mandal, D. Naccache, and M. Tibouchi, “Fully homomor-
phic encryption over the integers with shorter public keys,” in Advances

in Cryptology – CRYPTO 2011, vol. 6841, 08 2011, pp. 487–504.

[5] J.-S. Coron, D. Naccache, and M. Tibouchi, “Public key compression and
modulus switching for fully homomorphic encryption over the integers,”
in Advances in Cryptology – EUROCRYPT 2012, 04 2012, pp. 446–464.

[6] J. H. Cheon, J.-S. Coron, J. Kim, M. S. Lee, T. Lepoint, M. Tibouchi,
and A. Yun, “Batch fully homomorphic encryption over the integers,”
in Annual International Conference on the Theory and Applications of

Cryptographic Techniques. Springer, 2013, pp. 315–335.

[7] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, “A full rns
variant of approximate homomorphic encryption,” in Selected Areas in

Cryptography – SAC 2018, C. Cid and M. J. Jacobson Jr., Eds. Cham:
Springer International Publishing, 2018, pp. 347–368.

[8] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption
for arithmetic of approximate numbers,” in Advances in Cryptology

– ASIACRYPT 2017, T. Takagi and T. Peyrin, Eds. Cham: Springer
International Publishing, 2017, pp. 409–437.

[9] J. Fan and F. Vercauteren, “Somewhat practical fully homomor-
phic encryption,” Cryptology ePrint Archive, Report 2012/144, 2012,
https://eprint.iacr.org/2012/144.

[10] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully
homomorphic encryption without bootstrapping,” in Proceedings

of the 3rd Innovations in Theoretical Computer Science

Conference, ser. ITCS ’12. New York, NY, USA: Association
for Computing Machinery, 2012, pp. 309–325. [Online]. Available:
https://doi.org/10.1145/2090236.2090262

[11] J.-S. Coron, T. Lepoint, and M. Tibouchi, “Scale-invariant fully homo-
morphic encryption over the integers,” in International Workshop on

Public Key Cryptography. Springer, 2014, pp. 311–328.

[12] Z. Brakerski and V. Vaikuntanathan, “Efficient fully homomorphic
encryption from (standard) lwe,” SIAM Journal on Computing, vol. 43,
no. 2, pp. 831–871, 2014.

[13] Z. Brakerski, “Fully homomorphic encryption without modulus switching
from classical gapsvp,” in Annual Cryptology Conference. Springer,
2012, pp. 868–886.

[14] C. Gentry, S. Halevi, and N. P. Smart, “Fully homomorphic encryption
with polylog overhead,” in Annual International Conference on the

Theory and Applications of Cryptographic Techniques. Springer, 2012,
pp. 465–482.

[15] ——, “Better bootstrapping in fully homomorphic encryption,” in
International Workshop on Public Key Cryptography. Springer, 2012,
pp. 1–16.

[16] “Microsoft SEAL (Release 3.5.9),” https://github.com/microsoft/SEAL,
2020.

[17] “HEAAN Open-Source HE Library,”
https://github.com/snucrypto/HEAAN, 2020.

[18] R. Dathathri, O. Saarikivi, H. Chen, K. Laine, K. Lauter, S. Maleki,
M. Musuvathi, and T. Mytkowicz, “CHET: An Optimizing Compiler
for Fully-homomorphic Neural-network Inferencing,” in Proceedings

of the 40th ACM SIGPLAN Conference on Programming Language

Design and Implementation, ser. PLDI 2019. ACM, 2019, pp. 142–156.
[Online]. Available: http://doi.acm.org/10.1145/3314221.3314628

[19] R. Dathathri, B. Kostova, O. Saarikivi, W. Dai, K. Laine, and
M. Musuvathi, “EVA: An encrypted vector arithmetic language and
compiler for efficient homomorphic computation,” in Proceedings

of the 41st ACM SIGPLAN Conference on Programming Language

Design and Implementation, ser. PLDI 2020. Association for
Computing Machinery, 2020, pp. 546–561. [Online]. Available:
https://doi.org/10.1145/3385412.3386023

[20] F. Boemer, Y. Lao, R. Cammarota, and C. Wierzynski, “nGraph-HE: A
Graph Compiler for Deep Learning on Homomorphically Encrypted
Data,” in Proceedings of the 16th ACM International Conference on

Computing Frontiers, ser. CF ’19. ACM, 2019, pp. 3–13. [Online].
Available: http://doi.acm.org/10.1145/3310273.3323047

[21] F. Boemer, A. Costache, R. Cammarota, and C. Wierzynski, “nGraph-
HE2: A High-Throughput Framework for Neural Network Inference
on Encrypted Data,” in Proceedings of the 7th ACM Workshop

on Encrypted Computing & Applied Homomorphic Cryptography,
ser. WAHC’19. ACM, 2019, pp. 45–56. [Online]. Available:
http://doi.acm.org/10.1145/3338469.3358944

[22] C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. Pienaar,
R. Riddle, T. Shpeisman, N. Vasilache, and O. Zinenko, “MLIR:
Scaling Compiler Infrastructure for Domain Specific Computation,”
in 2021 IEEE/ACM International Symposium on Code Generation

and Optimization (CGO). IEEE, pp. 2–14. [Online]. Available:
https://ieeexplore.ieee.org/document/9370308/

[23] Y. Ishai and A. Paskin, “Evaluating branching programs on encrypted
data,” in Proceedings of the 4th Conference on Theory of Cryptography,
ser. TCC’07. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 575–594.

[24] D. Boneh, E.-J. Goh, and K. Nissim, “Evaluating 2-dnf formulas
on ciphertexts,” in Proceedings of the Second International

Conference on Theory of Cryptography, ser. TCC’05. Berlin,
Heidelberg: Springer-Verlag, 2005, pp. 325–341. [Online]. Available:
https://doi.org/10.1007/978-3-540-30576-7 18

[25] T. Sander, A. Young, and Moti Yung, “Non-interactive cryptocomputing
for nc/sup 1/,” in 40th Annual Symposium on Foundations of Computer

Science (Cat. No.99CB37039), 1999, pp. 554–566.

[26] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and learning
with errors over rings,” in Advances in Cryptology – EUROCRYPT 2010,
H. Gilbert, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010.

[27] M. Albrecht, M. Chase, H. Chen, J. Ding, S. Goldwasser, S. Gorbunov,
S. Halevi, J. Hoffstein, K. Laine, K. Lauter, S. Lokam, D. Micciancio,
D. Moody, T. Morrison, A. Sahai, and V. Vaikuntanathan, “Homomorphic
encryption security standard,” HomomorphicEncryption.org, Toronto,
Canada, Tech. Rep., November 2018.

[28] Z. Brakerski, C. Gentry, and S. Halevi, “Packed Ciphertexts in LWE-
Based Homomorphic Encryption,” in Public-Key Cryptography PKC

2013, ser. Lecture Notes in Computer Science, K. Kurosawa and
G. Hanaoka, Eds. Springer, 2013, pp. 1–13.

[29] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[30] M. S. Riazi, K. Laine, B. Pelton, and W. Dai, “HEAX: An Architecture
for Computing on Encrypted Data,” in Proceedings of the Twenty-Fifth

International Conference on Architectural Support for Programming

Languages and Operating Systems. ACM, pp. 1295–1309. [Online].
Available: https://dl.acm.org/doi/10.1145/3373376.3378523

[31] D. W. Archer, J. M. Caldern Trilla, J. Dagit, A. Malozemoff, Y. Polyakov,
K. Rohloff, and G. Ryan, “RAMPARTS: A Programmer-Friendly System
for Building Homomorphic Encryption Applications,” in Proceedings

of the 7th ACM Workshop on Encrypted Computing & Applied

Homomorphic Cryptography, ser. WAHC’19. ACM, 2019, pp. 57–68.
[Online]. Available: http://doi.acm.org/10.1145/3338469.3358945

[32] A. Viand and H. Shafagh, “Marble: Making fully homomorphic encryp-
tion accessible to all,” in Proceedings of the 6th Workshop on Encrypted

Computing amp; Applied Homomorphic Cryptography, ser. WAHC ’18.
Association for Computing Machinery, 2018.

[33] E. Chielle, O. Mazonka, H. Gamil, N. G. Tsoutsos, and M. Ma-
niatakos, “E3: A framework for compiling c++ programs with en-

crypted operands,” Cryptology ePrint Archive, Report 2018/1013, 2018,
https://ia.cr/2018/1013.

[34] E. Crockett, C. Peikert, and C. Sharp, “Alchemy: A language and compiler
for homomorphic encryption made easy,” in Proceedings of the 2018

ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’18. Association for Computing Machinery, 2018.

[35] Porcupine: A Synthesizing Compiler for Vectorized Homomorphic

Encryption. Association for Computing Machinery, 2021, p. 375389.
[36] T. van Elsloo, G. Patrini, and H. Ivey-Law, “Sealion: a framework for

neural network inference on encrypted data,” 2019.
[37] H. Chen, R. Cammarota, F. Valencia, F. Regazzoni, and F. Koushanfar,

“Ahec: End-to-end compiler framework for privacy-preserving machine
learning acceleration,” in 2020 57th ACM/IEEE Design Automation

Conference (DAC), 2020.
[38] A. Viand, P. Jattke, and A. Hithnawi, “Sok: Fully homomorphic

encryption compilers,” in 2021 2021 IEEE Symposium on Security and

Privacy (SP). IEEE Computer Society, may 2021, pp. 1092–1108.
[39] “Cingulata,” https://github.com/CEA-LIST/Cingulata, 2020.
[40] S. Carpov, P. Dubrulle, and R. Sirdey, “Armadillo: a compilation chain for

privacy preserving applications,” in Proceedings of the 3rd International

Workshop on Security in Cloud Computing, 2015, pp. 13–19.
[41] D. Lee, W. Lee, H. Oh, and K. Yi, “Optimizing homomorphic evaluation

circuits by program synthesis and term rewriting,” in Proceedings of the

41st ACM SIGPLAN Conference on Programming Language Design and

Implementation, ser. PLDI 2020. New York, NY, USA: Association
for Computing Machinery, 2020, pp. 503–518. [Online]. Available:
https://doi.org/10.1145/3385412.3385996

[42] “PALISADE Lattice Cryptography Library,” https://palisade-crypto.org/,
Oct. 2020.

[43] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “Tfhe: Fast
fully homomorphic encryption over the torus,” Journal of Cryptology,
vol. 33, no. 1, pp. 34–91, 2020.

[44] “nGraph Deep Learning Compiler,” https://www.ngraph.ai, 2020.
[45] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: A system for large-
scale machine learning,” in 12th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 16). Savannah, GA: USENIX
Association, Nov. 2016, pp. 265–283.

[46] D. Williamson, “Dynamically scaled fixed point arithmetic,” in [1991]

IEEE Pacific Rim Conference on Communications, Computers and Signal

Processing Conference Proceedings. IEEE, 1991, pp. 315–318.
[47] M. Gao, Q. Wang, and G. Qu, “Energy and error reduction using variable

bit-width optimization on dynamic fixed point format,” in 2019 IEEE

Computer Society Annual Symposium on VLSI (ISVLSI). IEEE, 2019,
pp. 152–157.

[48] T. Na and S. Mukhopadhyay, “Speeding up convolutional neural
network training with dynamic precision scaling and flexible multiplier-
accumulator,” in Proceedings of the 2016 International Symposium on

Low Power Electronics and Design, 2016, pp. 58–63.
[49] P. Gysel, M. Motamedi, and S. Ghiasi, “Hardware-oriented approximation

of convolutional neural networks,” arXiv preprint arXiv:1604.03168,
2016.

[50] A. B. Kinsman and N. Nicolici, “Bit-Width Allocation for
Hardware Accelerators for Scientific Computing Using SAT-
Modulo Theory,” vol. 29, no. 3, pp. 405–413. [Online]. Available:
http://ieeexplore.ieee.org/document/5419231/

[51] S. Purini, V. Benara, Z. Choudhury, and U. Bondhugula, “Bitwidth
customization in image processing pipelines using interval analysis and
SMT solvers,” in Proceedings of the 29th International Conference

on Compiler Construction. ACM, pp. 167–178. [Online]. Available:
https://dl.acm.org/doi/10.1145/3377555.3377899

