Scalable Speculative Parallelization on Commodity Clusters

Hanjun Kim Arun Raman Feng Liu Jae W. Leef
Departments of Electrical Engineering and Computer Science

Princeton University
Princeton, USA

David I. August
1 Parakinetics Inc.
Princeton, USA
leejw@parakinetics.com

{hanjunk, rarun, fengliu, august}@princeton.edu

Abstract

While clusters of commodity servers and switches are the most
popular form of large-scale parallel computers, many programs are
not easily parallelized for execution upon them. In particular, high
inter-node communication cost and lack of globally shared memory
appear to make clusters suitable only for server applications with
abundant task-level parallelism and scientific applications with regu-
lar and independent units of work. Clever use of pipeline parallelism
(DSWP), thread-level speculation (TLS), and speculative pipeline
parallelism (Spec-DSWP) can mitigate the costs of inter-thread
communication on shared memory multicore machines. This paper
presents Distributed Software Multi-threaded Transactional memory
(DSMTX), a runtime system which makes these techniques applicable
to non-shared memory clusters, allowing them to efficiently address
inter-node communication costs. Initial results suggest that DSMTX
enables efficient cluster execution of a wider set of application types.
For 11 sequential C programs parallelized for a 4-core 32-node
(128 total core) cluster without shared memory, DSMTX achieves
a geomean speedup of 49x. This compares favorably to the 15X
speedup achieved by our implementation of TLS-only support for
clusters.

Keywords

loop-level parallelism; multi-threaded transactions; pipelined par-
allelism; software transactional memory; thread-level speculation;
distributed systems

1. Introduction

Clusters of commodity servers and switches are deployed
to speed up the execution of programs beyond the perfor-
mance achievable on a single-board computer. Commodity
clusters typically have high inter-node communication cost
and lack globally shared memory. For these reasons, clusters
are primarily used for large-scale scientific programs and
network services like web search and mail. These programs
consist of units of work that are mostly independent, allowing
parallel execution with little inter-process communication or
with predictable, regular communication among contexts. Con-
sequently, the high inter-node communication latency typical
of commodity clusters does not necessarily impact such pro-
grams significantly. In contrast, general-purpose applications
are characterized by irregular data access patterns and complex
control flow. Executing such programs on a cluster platform
poses several challenges. The high inter-node communication
cost for remote accesses of shared data means that an intel-
ligent partitioning of the code and data is needed. Extracting
parallelism to scale to the parallel hardware resources afforded

by the cluster is difficult. For these reasons, such programs
have been deemed unsuitable for execution on clusters.

Recent research has demonstrated that a combination of
pipeline parallelism (DSWP), thread-level speculation (TLS),
and speculative pipeline parallelism (Spec-DSWP) can un-
lock significant amounts of parallelism in general-purpose
programs on shared memory systems [6, 24, 27, 29, 30, 32,
36, 37]. Pipeline parallelization techniques such as DSWP
partition a loop in such a way that the critical path is executed
in a thread-local fashion, with off-critical path data flowing
unidirectionally through the pipeline. The combination of these
two factors makes the program execution highly insensitive
to inter-thread communication latency. TLS and Spec-DSWP
use speculation to break dependences that rarely manifest at
run-time. Doing so exposes more parallelism and allows the
parallelization to scale.

The scalability and inter-thread communication latency tol-
erance of these techniques warrant a re-visit of the assumption
about the unsuitability of clusters as a first-class platform for
executing general-purpose programs. Referring back to the
factors that enabled scalable execution on shared memory
machines, the main unconventional requirement is support
for speculative execution. Speculative execution requires the
memory system to provide a means to checkpoint and rollback
program state in the event of misspeculation. Most existing
proposals for transactional memories or TLS memory sys-
tems target only small-scale parallel computers with tens of
cores. They require specialized hardware [27, 28, 31, 33,
35] or rely on cache-coherent shared memory [20, 21, 24,
30]. These requirements are not met on a cluster platform.
There have been some proposals for transactional memories
on clusters [5, 10, 16, 19]. Because they implement single-
threaded transactional semantics, these systems may be used to
support TLS after modification to enforce an ordering among
the transactions. However, the single-threaded transactional
semantics implemented by these systems are insufficient to
support Spec-DSWP which requires Multi-threaded Transac-
tions MTXs) [3, 24, 31, 32]. Current implementations of
MTX require specialized hardware [31] or hardware with
cache-coherent shared memory [24].

This paper proposes the Distributed Software Multi-
threaded Transactional memory system (DSMTX), a software-
only runtime system that enables both TLS and Spec-DSWP
on commodity clusters. DSMTX implements the MTX concept
originally proposed in a patent [3] and described in prior

work [24, 31]. For clusters, DSMTX supports the same APIs as
those systems, allowing existing programs parallelized using
MTX to be scaled up to hundreds of cores in a cluster without
having to be re-written. An initial evaluation of the DSMTX
system on a 128-core cluster suggests that application types
heretofore considered unsuitable for parallel execution in a
cluster environment can benefit from the large number of cores
afforded by a cluster.
The contributions of this paper are:

1) A runtime system called Distributed Software Multi-
threaded Transactional memory (DSMTX) that enables
both TLS and Spec-DSWP on both shared memory
machines and message-passing machines

2) A description of a DSMTX prototype built on top of
the OpenMPI communication library [8] deployed on a
commodity cluster with 32 nodes (128 cores), with a
focus on the communication optimizations necessary for
efficient parallelization in the face of high inter-thread
communication cost

3) An in-depth evaluation of DSMTX using applications
from the SPEC CPU92, SPEC CPU95, SPEC CPU2000,
SPEC CPU2006, and PARSEC benchmark suites

Section 2 motivates this work along two orthogonal axes—
support of hardware platforms and support of parallelization
techniques. Section 3 presents the design of DSMTX. Sec-
tion 4 describes the implementation of DSMTX and the code
transformations and optimizations needed to hide the high
cost of inter-thread communication. Section 5 presents the
performance improvements obtained when DSMTX is used
to support TLS and Spec-DSWP parallelizations. Section 6
contextualizes related work, and Section 7 concludes the paper.

2. Background & Motivation

Existing proposals for runtime systems to support specu-
lative parallelization are limited both in the range of paral-
lelization paradigms supported and in the types of hardware
platforms supported. This work addresses these limitations.
Section 2.1 provides background on TLS and Spec-DSWP.
Section 2.2 motivates Multi-threaded Transactions (MTX)
as an enabling mechanism for both TLS and Spec-DSWP.
Section 2.3 presents machines without shared memory as first-
class target platforms for these parallelization paradigms.

2.1. Loop Parallelization

Many scientific and numeric applications are embarrassingly
parallel; they typically consist of counted loops that manip-
ulate regular structures, accesses to which can be precisely
analyzed statically. DOALL parallelization allows these appli-
cations to be executed in a very scalable manner [1]. DOALL
partitions the iteration space into groups that are executed con-
currently with no inter-thread communication. Consequently,
DOALL often results in speedup that is proportional to the
number of threads.

However, DOALL is not applicable when a loop has inter-
iteration dependences. The code in Figure 1(a) shows such
an example. The Program Dependence Graph (PDG) in Fig-
ure 1(b) has inter-iteration dependences (indicated by cycles in
the graph) that prevent the loop from being parallelized using
DOALL.

To parallelize such loops, either DOACROSS [11] or De-
coupled Software Pipelining (DSWP) [22] can be applied.
Both techniques handle inter-iteration dependences by means
of communications among threads, and Figure 1(c) shows their
respective execution plans. Each node represents a dynamic
instance of a statement in Figure 1(a), where the number
indicates the iteration to which it belongs. DOACROSS sched-
ules the entire loop body iteration by iteration on alternate
threads. DSWP partitions the loop body into multiple pipeline
stages with each stage executing within a thread over all
iterations. Figure 1(c) shows, ignoring the pipeline fill time,
both DOACROSS and DSWP yield a speedup of 2x using 2
threads in the steady state when the inter-thread communica-
tion latency is one cycle.

Although the two techniques are comparable in appli-
cability, DSWP provides more robust performance than
DOACROSS because DSWP is more tolerant to increases in
inter-core communication latency. This difference is attributed
to their inter-core communication patterns: DOACROSS ex-
hibits a cyclic communication pattern between threads, while
DSWP exhibits an acyclic, or unidirectional, communication
pattern. The pipeline organization of DSWP keeps dependence
recurrences local to a thread, avoiding communication latency
on the critical path of program execution. When the inter-core
latency is increased from one to two cycles as in Figure 1(d),
the speedup with DOACROSS reduces to 1.33x, but the
speedup with DSWP remains 2x in the steady state.

Poor scalability of DSWP due to limited number of and
imbalance among pipeline stages is not a problem. Huang
et al. proposed DSWP+ that intentionally creates unbalanced
pipeline stages to expose opportunities for scalable paralleliza-
tion such as DOALL [15]. For example, 256 .bzip2 cannot
be parallelized directly with DOALL due to inter-iteration de-
pendences from reading and writing files. DSWP+ can extract
a DOALL stage (compressing blocks) that accounts for most of
the execution time, and can exploit the scalability of DOALL.
As more threads are assigned to this stage, the pipeline bal-
ance naturally improves. The DSWP+/...] notation describes
the hybrid parallelization technique. Within square brackets,
parallelization techniques applied to each stage are specified.
256.bzip2 is expressed as Spec-DSWP+[S, DOALL, S].
Here, S indicates a stage that is squentially executed, whereas
Spec- indicates speculationi between stages.

Non-speculative loop transformations must respect all de-
pendences in a loop, which significantly limits their applica-
bility and scalability due to the conservative nature of static
dependence analysis. Speculating that some dependences will
not manifest at run-time allows these techniques to extract
significantly greater amounts of parallelism. Referring to Fig-
ure 1, speculating that the loop will execute many times allows

Core 2 Core 2

A: while (node) { ’

B: node = node->next; RSN
// "work" may modify list i

C: res = work(node); 21 4
D: write(res);

} il
(a) Example Code ot

— Data dependence
- - »=Control dependence
X: Speculated dependence

(b) PDG for the example

DOACROSS
2 cycles/iter

(c) Comm. latency = 1 cycle

DSWP
2 cycles/iter

DSWP
2 cycles/iter

DOACROSS
3 cycles/iter

(d) Comm. latency = 2 cycles

Figure 1: DSWP is more tolerant than DOACROSS to increases in inter-core communication latency.

the control dependences to be removed. Further, speculating
that work does not modify the linked list allows memory
dependences to be removed. Combined, speculation allows
significant portions of different iterations to be overlapped
in execution. All speculative parallelization techniques are
iteration-centric in that they remove inter-iteration depen-
dences. Consequently, a loop iteration is the unit of atomic
work in both TLS and Spec-DSWP. The memory system must
support the atomic execution of memory operations in a loop
iteration.

2.2. Multi-threaded Transactions to Enable TLS and
Spec-DSWP

In TLS, each loop iteration is executed by a single thread.
Consequently, the unit of atomic execution is single-threaded.
Conventional transactional memory or TLS memory systems
that guarantee single-threaded atomicity may be used to sup-
port TLS. However, in Spec-DSWP, each loop iteration is
executed in a staged manner by multiple threads, making the
atomic unit multi-threaded. To support these atomic units,
Multi-threaded Transactions (MTXs) [3, 24, 31] are required.
An MTX represents an atomic set of memory accesses like
its single-threaded counterpart, but may contain many sub-
transactions (subTXs) each of which is executed by only
one thread. subTXs are ordered by the program order of
the sequential loop. Typically, a subTX corresponds to the
execution of a pipeline stage on each iteration. All threads
executing the subTXs of an MTX can see the results of
uncommitted speculative stores executed by earlier subTXs
within the MTX. Support for MTXs enables Spec-DSWP
to extract deeper and wider pipelines. An MTX with only
one subTX degenerates to a single-threaded transaction. This
allows a system that implements MTX to implicitly support
TLS in addition to Spec-DSWP.

2.3. Parallel Computers without Cache-Coherent
Shared Memory

Despite the relative ease and simplicity of programming
shared memory machines, commodity clusters dominate for
large-scale parallel processing. A cluster node, with one or
more processor cores, typically has its own private physical
memory address space and constitutes an independent domain
of cache coherence; multiple nodes communicate via explicit
message passing through I/O channels. Unlike Symmetric
Multiprocessors (SMP), clusters have scalable per-processor
memory and I/O bandwidth. In addition, commodity clus-
ters have a cost advantage over cache-coherent Non-Uniform
Memory Access (ccNUMA) multiprocessors whose cost for
cache coherence in hardware increases dramatically as the
number of nodes increases. Because of their low cost, com-
modity clusters are the most widespread example of large-
scale parallel computers that enable network services and high-
performance computing today [23].

Since the memory system of a cluster is physically dis-
tributed across multiple nodes without a globally shared ad-
dress space, remote data must be explicitly sent and received
between a producer-consumer pair using a message passing
protocol such as MPI. The difficulty of message passing-style
programming, combined with high inter-node communication
latency, has limited the use of clusters to applications such as
scientific codes, many of which have little communication and
can be easily parallelized. Although distributed transactional
memory systems [5, 10, 16, 19] can be modified to enable TLS
on clusters, they do not support MTXs and hence cannot be
used by Spec-DSWP. Prior proposals to support MTXs [24,
31] require either hardware modifications or cache-coherent
shared memory, so they cannot run on commodity clusters.

In addition to clusters, there are emerging multicore ar-
chitectures targeted for certain workloads that discard even

1 1
1 1
5 No Distributed IPC ' STM/TLS | Distributed
AN =) Soft DSM | on i Software
c g Assumptions | SOTMER ' clusters | MTX (DSMTX)
]] \ \
a 77 (S, Lo R,
£ < i i
2 = Cache- ' '
& 9 Coherent ! Software ! Software
b (3 Shared 1 TLS ! MTX (SMTX)
S @ Memory |
Q Y e ___ 7 Lo ___ I,
= 6 |
£ . i
§ Specialized ' TLS ' Hardware
Memory i Memory 1 MTX (HMTX)
i i
DOALL DOALL, DOALL, TLS,
TLS Spec-DSWP

Exploitable parallelism

Figure 2: DSMTX enables the widest variety of parallelization
paradigms, while making the fewest assumptions about the
underlying hardware.

chip-wide cache coherence to minimize hardware cost and
maximize energy efficiency. For example, Intel’s new 48-core
architecture does not support hardware cache coherence [14].
Such processors rely on explicit message passing for efficient
inter-core communication and face the same programming
challenges as clusters, with the main difference being lower
communication latency. A runtime system that exposes addi-
tional parallelization opportunities adds great value to these
platforms that lack shared memory.

Figure 2 summarizes the motivation of this paper. DSMTX
aims to improve the applicability and scalability of paralleliza-
tion technology for general-purpose programs by supporting
the widest variety of parallelization techniques while making
the fewest assumptions about the underlying hardware.

3. Distributed Software Multi-threaded Transac-
tional Memory

Distributed Software Multi-threaded Transactional memory
(DSMTX) enables both TLS and Spec-DSWP on both shared
memory machines and message-passing machines. Section 3.1
describes the execution of MTXs on message-passing ma-
chines that do not have shared memory. As in SMTX, a prior
implementation of MTX in software [24], DSMTX moves
the speculation management overheads off the critical path
by executing the MTX validation and commit operations in
separate pipeline stages; Section 3.2 provides the details.
Section 3.3 describes how DSMTX provides a unified virtual
address space on top of the message-passing machine in order
to allow each thread to initialize its memory state without an
address translation, as on a shared memory machine.

3.1. Multi-threaded Transactions on a Message-
Passing Machine

Most of the dependences that are speculated by Spec-DSWP
are cross-iteration dependences; breaking these dependences
allows code on different iterations to be executed in parallel.

Consequently, an iteration is the unit of speculative execution,
and updates to shared memory in an iteration must be executed
atomically. Referring to the code in Figure 1(a) and the execu-
tion model in Figure 3(c), it can be seen that Spec-DSWP splits
an iteration of the loop across multiple threads; this makes
the unit of speculative execution multi-threaded. Each iteration
may be wrapped in a multi-threaded transaction or MTX. As
Figure 3(c) shows, each MTX is composed of one or more
sub-transactions or subTXs. Each stage of a loop iteration
executes in a subTX within the same MTX as the other stages
of the iteration. subTXs are executed in the original sequential
program order. To support loop parallelization, DSMTX orders
MTXs according to the sequential loop iteration order.

In order to support the simultaneous execution of multiple
MTXs, DSMTX creates worker threads that have access
to different physical memory spaces. These “workers” are
launched as POSIX processes, potentially on different nodes
of a cluster. To take the overhead of speculation management
off the critical path, DSMTX creates a separate “try-commit
unit” that is responsible for validating MTXs and a “commit
unit” that is responsible for committing MTXs. These also
execute in different physical memory spaces. The memory
updates by a worker in an MTX are forwarded to other workers
that participate in the MTX via communication channels.
Combined, the physical memories of the workers and the try-
commit and commit units and the communication channel
buffers allow each MTX to have the illusion of a private
memory, and also allow multiple MTXs to be outstanding in
the system.

The life cycle of an MTX in the context of loop paral-
lelization, from initialization to commit, is described in detail
below.

MTX Initialization: The first MTX in the program is
initialized with the non-speculative memory state. This state
is generated by the sequential, non-transactional code prior
to the parallel section. One option is to have each worker
generate the state by redundant execution of the sequential
code. However, this may result in replicated side effects.
DSMTX uses Copy-On-Access to initialize an MTX. Only the
commit unit executes the sequential, non-transactional code to
generate the initial non-speculative memory state. The memory
state in a worker is initially marked as uninitialized (this is
done at the memory page granularity). On the first access
of a location on an uninitialized page, DSMTX implicitly
copies the physical page from the commit unit to the worker’s
memory. The worker uses the values on this page to execute
the MTX. Figure 3(a) and Figure 3(b) show this operation.

MTX Execution: All speculative loads and stores in an
MTX happen in the private memories of the workers. Stores by
an earlier subTX in an MTX must be visible to loads in a later
subTX so that there is no intra-MTX misspeculation. Since
subTXs are executed by different worker threads in different
memories, each worker must forward its speculative stores to
workers executing later subTXs. This is called uncommitted
value forwarding, and it happens via the communication
channels shown in Figure 3(b). Only those workers that

I WorkerT L
Virtual Address Space

Physical Pages

I WorkerT L
Virtual Address Space

Physical Pages

Page Table Page Table | . Core2 | Core3 | Core4 ; Core5
) = “) B Accessed| Modified
! Version k
[T Workez L4 Y Twokez L ii o
!) Worker2 ! . Worker2 2 Pipeline Fill
Virtual Address Space Virtual Address Space Time

B-E-E-E-® g

Page Table Page Table i
o | o Modified| 3
— — on o
Version j @
i _ICommitUnit L ¢ i _ICommitUnit L ¢ 5T "
% | Virtual Address Space e % | Virtual Address Space |
k Page Tabl /}DF(Copy | Page Tabl //COP(Cmt 6L 2\ o
¢ on on ¢ on Value Iteration 1
; : Access Access ; : Access Stagel Stage2 Try%(‘)l?:mil C%Tir:]il
ﬁ ————— = Communication Channel ﬁ Version i

(a) Program State before Start

(b) Program State during Execution

(c) Execution Model

Figure 3: DSMTX overview

participate in the same MTX are connected. This ensures that
the number of communication channels in the system does not
grow quadratically in the number of threads. The uncommitted
values are explicitly forwarded at the end of a subTX. A
later subTX refreshes its memory with the uncommitted values
before commencing execution.

The communication channels also serve to decouple the
workers and the commit unit. Workers can execute subTXs
from different MTXs, and can do so without waiting for
validation and commit of the prior MTX. Figure 3(b) illustrates
the decoupled execution. Workerl is executing a subTX of
MTXy, while Worker2 is executing a subTX of MTX;, and
the commit unit is still committing MTX; (k > j > 7).

MTX Validation: An MTX is deemed to be free of conflict
by means of a unified value prediction and checking mecha-
nism. For control dependences, misspeculation is detected if
the predicted value of the branch condition does not match
the actual value at run-time. False memory dependences are
automatically broken by means of memory versioning, so there
is no need to check for their manifestation. A true memory
dependence between a load and a store operation is checked
by comparing the speculatively loaded value (predicted value)
with the actual value stored by the store operation when that
store is ready to be committed. This check is done by the try-
commit unit. In all misspeculation cases, a signal is sent to
the commit unit which orchestrates recovery.

MTX Committing: After all the subTXs in an MTX are
deemed to be free of conflicts, the commit unit commits
the entire MTX atomically. Through the same mechanism as
uncommitted value forwarding, all stores in subTXs are for-
warded from the workers to the commit unit. The commit unit
commits the subTXs in a transaction by updating its memory
with the forwarded values. The updates are done in order of
subTX (which is the program order); if a memory location is
updated in two different subTXs, the last update takes effect.
This is called group transaction commit. Reiterating, since
the commit unit’s operations are decoupled from the worker

threads by means of the communication channels, the overhead
of commit does not impact the workers’ execution. In the
event of a conflict between MTXs, the commit unit signals
the workers to restart the logically later MTX. The MTX is
reinitialized with the committed memory state as before, and
speculative execution resumes.

3.2. Speculation Management Via Pipelining

Figure 3(c) shows the execution model when DSMTX is
used by Spec-DSWP to parallelize the example in Figure 1(a).
Like SMTX [24], DSMTX pipelines the operations needed
for managing the transactional/speculative execution. DSMTX
moves the MTX validation and commit operations off the
critical path of execution by executing the try-commit and
commit units in their own pipeline stages. All stages of
the pipeline are decoupled from each other by means of
inter-core communication queues. This decoupled execution
scheme allows the worker threads shown executing Stagel
and Stage2 in Figure 3(c) to run ahead and execute later
MTXs, while the try-commit and commit units validate and
commit earlier MTXs. Although the speculation management
operations execute in parallel with the execution of the original
loop in the workers, their serialization in the try commit and
commit units may result in a performance bottleneck as the
number of workers increases. While this did not happen for
most of the benchmarks studied on the evaluation platform as
described in Section 5, it may be noted that the algorithms of
the try-commit unit and the commit unit are parallelizable and
can alleviate this serialization concern.

3.3. Unified Virtual Address Space

DSMTX provides a Unified Virtual Address space (UVA) to
all the threads in the system; a pointer to a memory location
allocated by thread 1 is valid in thread 2 without the need
for an address translation. UVA allows workers in DSMTX to
share the same virtual address view across threads in different
machines. UVA works by statically assigning ownership of

different virtual address regions to different threads. Most
of the time, a memory allocation request is satisfied by a
thread by allocating from the virtual address region that it
owns. Synchronization among threads is required only when
the memory requirements of a thread exceed the size of the
region that it owns. Ownership information is encoded in the
upper bits of the virtual address. This information is used
to fetch a page from a remote node if the page does not
exist locally. MTX initialization via Copy-On-Access relies
on the UVA implementation to load committed data. Finally,
because DSMTX implements the same interface as SMTX,
existing codes parallelized using the SMTX library that relies
on shared memory can be executed without any modification
(with the exception of worker initialization, described in the
next section) on machines without shared memory.

4. Implementation

DSMTX is implemented as a user-land library on top of
OpenMPI [8]. Section 4.1 explains the difference between the
DSMTX API and the SMTX API proposed in [24]. Section 4.2
describes the low-level implementation details of the various
MTX operations, highlighting the different communication
mechanisms for MTX initialization and MTX execution. Fi-
nally, Section 4.3 explains recovery from misspeculation in
greater detail.

4.1. DSMTX API

Table 1 shows the API of the DSMTX runtime system. The
API is identical to that of the SMTX system, with the addition
of two functions: DSMTX_Init and DSMTX_Finalize that
must be called at the beginning and the end of programs, re-
spectively. This is an artifact of the MPI-based implementation
since MPI requires MPT_TInit and MPI_Fini to be invoked.
As an implementation detail, unlike SMTX, mtx_spawn
in DSMTX does not create a new worker because DSMTX
spawns all the workers at the beginning of the program.
Instead, mtx_spawn causes the worker whose thread ID
matches tid to execute function with argument arg.
Notably missing from the API are custom malloc and free
functions. This is because DSMTX hooks the system malloc
and free calls in order to implement the Unified Virtual
Address (UVA) abstraction (explained in Section 3.3).

4.2. DSMTX Communication Support for MTX Op-
erations

Virtually all MTX operations require communication among
the workers, try-commit unit, and commit unit, albeit in a
unidirectional way. MTX initialization requires data to be
sent from the commit process to the workers executing the
MTX; uncommitted value forwarding during MTX execution
requires the communication of speculative stores to the later
subTXs; speculative stores and loads must be forwarded for
MTX validation and commit. Since the threads executing

the MTXs do so in different physical memory spaces, all
the communication must be explicitly managed by the run-
time system. To minimize the cost of such communications,
DSMTX implements two different mechanisms.

Copy-On-Access (COA): DSMTX allows only the commit
unit to execute the sequential, non-transactional portions of a
parallelized program. The program state generated by these
sequential portions may be used by the worker threads in the
parallel portion of the program. All the data that is live into an
MTX must be transferred from the commit unit to the workers
participating in that MTX.

A naive solution is to send the entire live-in data set to
all the workers when parallel execution begins. However,
finding the exact minimal live-in set is difficult, and may
require the parallelizer to be conservative and send the entire
program state which could be very costly. Even if there is exact
information about the live-in data, it may not be required by
each worker thread since code in the parallel section is split
across the many workers. A better solution is to send data only
when it is required (Copy-On-Access). At the beginning of
parallel execution, each worker thread adds access protections
to its heap space. When a thread accesses a memory location,
the protection results in a page fault, causing a transfer of
data from the commit unit to the worker. This mechanism
transfers only data that is really needed by each worker,
thereby avoiding the transfer of excessive, unnecessary data.

On a cluster, the round-trip latency induced by COA can
be prohibitive if COA is done at a word granularity. DSMTX
implements COA at the memory page granularity (4096 bytes
on our experimental platform). Words on memory pages in the
commit unit are not modified once the sequential portion of
the program has ended and parallel execution has begun. By
sending a memory page in response to a request for a word,
DSMTX aggressively speculates that words near the original
location will be accessed by the worker in the future. This
serves as a constructive prefetching mechanism that amortizes
the round-trip latency cost over accesses to multiple locations
in the same page.

Message Passing: COA is suitable for transferring data that
will not be modified by the sender. However, during parallel
execution, memory locations may be accessed and modified
multiple times in highly irregular patterns by different worker
threads. Because of the asymmetric fashion in which Spec-
DSWP partitions a loop between the worker threads, memory
locations on the same page may be updated by threads
executing different stages of the pipeline. This calls for a
communication mechanism at a finer granularity than an entire
page. DSMTX supports communication of such data by means
of message passing queues over which data is communicated
at the word granularity. Consider uncommitted value forward-
ing in an MTX. When a worker executes mtx_write, the
address and value of the location to which the speculative store
occurred is sent over the message queue between the worker
and the commit unit.

Instead of directly using the MPI primitives for sending and
receiving data, DSMTX builds an enhanced message queue on

Operation

| Description

One-time Operations

DSMTX_Init (&argc, &argv)

Initialize MPI and Unified Virtual Address space

DSMTX_Finalize ()

Finalize MPI and Unified Virtual Address space

system = mtx_newDSMTXsystem(n,
configuration)

Initialize system of n threads with the given pipeline configuration; create queues, etc.

mtx_deleteSMTXsystem(system)

Finalize system; delete various data structures

mtx_spawn (function, tid, argument) Execute function with the provided argument if tid matches ID of self

mtx_commitUnit (system, Encapsulates the functionality of the commit unit; executes commit_fun when an MTX suc-

recovery_fun, commit_fun, arg) cessfully commits, and executes recovery_fun to generate correct program state following
misspeculation

mtx_tryCommitUnit (tid, arg) Encapsulates the conflict detection mechanism that is executed by the try-commit unit

Running Operations for Workers

mtx_produce (queue, value) Enqueue value in specified queue

value = mtx_consume (queue) Dequeue and return value

state = mtx_begin (tid) Enter an MTX by updating memory with stores in this MTX by earlier subTXs; notify
commit unit that a new MTX has been entered; returns the state of the system to check
for misspeculation or termination

state = mtx_end(tid) Exit the current MTX and notify later stages including the commit unit of the same; returns
the state of the system to check for misspeculation or termination

mtx_writeTo (tid, dest, addr, value) Forward an (addr, value) tuple to the specified destination

mtx_writeAll (tid, addr, value) Forward an (addr,value) tuple to all later stages in the pipeline including the try-commit
unit and the commit unit

mtx_read (tid, addr, value) Forward an (addr, value) tuple to the try-commit unit

mtx_misspec (tid)

Notify the commit unit of misspeculation

mtx_terminate (tid)

Notify the commit unit of termination of the parallel section

mtx_doRecovery (tid)

Handle recovery from misspeculation

Table 1: DSMTX Library Interface

top of the MPI library. While pipelined execution is insensitive
to inter-thread communication latency, it is sensitive to the
overhead of the operations required to send a datum [25]. The
MPI send (MPI_Send) and receive (MPI_Recv) primitives
execute 500 to 2,295 instructions, respectively, to send and
receive 8 bytes [8]. DSMTX avoids using MPI_Send and
MPI_Recv for every produce and consume by buffering
the produced values in the message queue, and invoking
MPI_Send only when the buffer fills up to a predetermined
size. This reduces the operational overhead of most produces
and consumes, and amortizes the cost of the underlying MPI
primitives. Note that unlike MPI_Bsend, a buffered send op-
eration in MPI, the message queue automatically manages the
buffer space so programmers need not worry about explicitly
allocating, deallocating, or overwriting it.

4.3. MTX Rollback

When an MTX is detected to conflict with an earlier MTX,
it must be re-executed. After receiving a misspeculation signal
from a worker thread or the try-commit unit, the system
goes into recovery mode. First, all threads hit a barrier to
ensure that others have also entered recovery mode. Second,
message queues containing speculative state are flushed. Third,
all threads again hit a barrier. Fourth, all threads but the
commit unit reinstate the access protection to the heap area,
effectively discarding the remaining speculative state. The
commit unit executes the loop iteration corresponding to the
aborted MTX in single-threaded fashion. During the execution
of this iteration, the commit unit may produce data via the
message queues to the workers; this explains why the barrier
in step three is necessary. Finally, all threads hit a barrier to
ensure that parallel execution may recommence. New MTXs

are spawned and COA ensures that the data they access will
be the new, committed data from the commit unit’s memory
space.

5. Evaluation

5.1. Evaluation Platform

The DSMTX system is evaluated on a 128-core cluster (32
nodes x 4 cores/node). Each node is a Dell PowerEdge 1950
with two dual-core processors (Intel Xeon 5160 @ 3.00GHz)
and 16GB of RAM. The nodes are interconnected by an
InfiniBand network, and OpenMPI [8] (v1.3.0 with gcc v3.4.6,
-03) is used as the underlying communication layer.

CPU-intensive benchmarks that require speculation for ef-
ficient parallelization are selected from the SPEC CPU92,
CPU95, CPU2000, CPU2006 [26], and PARSEC benchmark
suites [4]. Codes are manually parallelized in a systematic
manner. Due to the difficulty of manual application of compiler
algorithms, benchmark selection was influenced by source
code tractability. The selected benchmarks exhibit diversity
in terms of parallelization paradigms, types of speculation
required, and communication characteristics. To find candi-
dates for speculation, we used loop-level profiling and analysis
information from the VELOCITY compiler [7] and the LLVM
compiler infrastructure [17].

Table 2 lists the selected benchmarks along with information
such as benchmark description, parallelization paradigm, and
the speculation required for effective parallelization. Details
of each benchmark can be found in [4, 26]. In Table 2, when
pipeline parallelism is exploited, the parallelization technique
applied to each stage is indicated within square brackets in
the expression DSWP+[...]. S indicates that a stage executes

sequentially. A parallelization that uses speculation is prefixed
by Spec-. Spec-DSWP+]...] indicates that speculation spans the
entire pipeline. For such parallelizations, MTXs are necessary.
Depending on application structure, an appropriate paral-
lelization paradigm is chosen. By supporting both TLS and
Spec-DSWP, DSMTX achieves the best speedup provided
by either. DSMTX is compared against our implementation
of TLS-only support for clusters. TLS parallelizations are
done according to the algorithms in [27, 34]. Where possible,
optimizations such as minmax reduction and accumulator
expansion are applied in both sets of parallelizations. De-
pendences in functions such as rand are relaxed to allow
reordering of calls to the function due to the commutativity
of such functions. In two benchmarks, 052.alvinn and
swaptions, the DSMTX and TLS-only parallelizations are
the same—both are Spec-DOALL with no communication
among the threads except in the event of misspeculation.

5.2. Performance Scalability

Figure 4 shows the speedup over sequential execution of
each benchmark. In each graph, the x-axis shows the number
of cores, and the y-axis shows full application speedup. All
execution times were averaged over five runs. This section
discusses the parallelization and scalability bottlenecks of each
application.

052 .alvinn: The loop that is parallelized is at the second
level in a loop nest. All the threads must be initialized with
data from the commit unit at the beginning of each invocation
of the loop and must communicate data for a reduction
operation over many arrays at the end of each invocation.
These synchronizations limit the speedup.

130.11: The parallelization speculates that each script is
independent of the others and does not change the interpreter’s
environment or cause the interpreter to exit altogether. Ac-
cesses to the memory state corresponding to the interpreter’s
environment are executed transactionally. Control flow specu-
lation is used to break the dependences from the program exit
condition. In TLS, speedups are limited due to synchronization
arising from the print instruction.

164 .gzip: Compression works in three stages: 1) read
block from input file, 2) compress block in parallel, and 3)
write compressed block. 164.gzip uses a variable block
size, with the starting point of the next block being known
only after the current block is compressed. This dependence
prevents parallelization. The Y-branch [6] is used to break
the dependence and new blocks are started at fixed intervals.
Multiple versions of the arrays used for holding the blocks
are automatically created by DSMTX. Speedup is limited by
communication bandwidth.

179.art: The execution times of iterations in the paral-
lelized loop are highly unbalanced due to the varying trip count
of the inner loops. A round-robin assignment of iterations to
threads results in wasted execution time due to the imbalance.
To address this, the first stage distributes work based on queue
occupancy as a proxy for load on each parallel-stage thread. As

the number of threads increases, the round-trip communication
cost causes TLS speedup to grow slower than DSMTX using
Spec-DSWP.

197 .parser: The values of various global data structures
are speculated to be reset at the end of each iteration and
control flow speculation for error cases is applied. An entire
dictionary must be copied from the commit unit on access by
the worker threads, and sentences must be transferred from
the first stage to later stages. As a result, the communication
bandwidth becomes a performance bottleneck as the number
of threads increases beyond 32.

256.bzip2: Like 164.gzip, the second stage com-
presses blocks in parallel. Unlike 164 .gzip, the Y-branch
is not necessary because the block size is known in the first
stage. DSMTX creates multiple versions of the block array.
Control flow paths to handle error conditions are speculated
as not taken. While Spec-DSWP sends the whole input file
to each DOALL thread, TLS sends only the file descriptor
of the input file to each thread. In this case, communication
bandwidth is the main factor that affects performance, so TLS
shows slightly better performance than Spec-DSWP.

456 .hmmer: The first stage calculates scores in paral-
lel, while the second stage computes a histogram of the
scores sequentially. Max-reduction is applied to compute the
maximum score. Spec-DSWP scales to a higher core count
than TLS because the cyclic dependence of TLS puts inter-
thread communication latency on the critical path of program
execution, which becomes the bottleneck as the number of
threads increases.

464 .h264ref: Groups of Pictures (GoPs) are encoded
in parallel. Dynamic memory versioning enabled by DSMTX
breaks false memory dependences in the parallel stage and
allows the parallel encoding of GoPs. The source and destina-
tion of the synchronized dependences are inside an inner loop,
effectively serializing the TLS execution. Spec-DSWP moves
the dependence cycle to a separate stage allowing other stages
to execute without waiting. Speedup is limited primarily by
the number of GoPs available.

crc32: On a cluster with a network file system, the
original program spends most of its execution time reading
the files. To reduce this effect, block read is used instead of
character read by replacing getc with fread. The program
is speculatively parallelized assuming errors do not occur in
the CRC computation. Its speedup is limited by the number
of input files.

blackscholes: Speculation is applied on an error con-
dition. As in 456 .hmmer, the TLS parallelization peaks at
52 cores due to increased inter-thread communication latency
at higher numbers of cores.

swaptions: As in blackscholes, the outermost loop
is parallelized with speculation on an error condition during
price calculation. Scalability is limited by the input size.

Spe c-DOALL ——

TLS -

B

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

Number of Cores
(a) 052.alvinn

Spec-DSWP+(S,DOALL,S] ——

TLS -

o

25

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

Number of Cores
(d) 179.art

WP+[DOALL,S] ——

197]

Spec-L

TLS -

P4

o

x

pe

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

Number of Cores
(g) 456.hmmer

DSWP+[Spec-DOALL,S] ——
TLS

X

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

Number of Cores
(j) crc32

120x DSWP+[Spec-DOALL,S] —— 120x Spec-DSWP+[S,DOALL,S] ——
110x TLS - 110x TLS -
100x I 100x
A
90x 'y 90x
o 80x o 80x
S 70x Ve S 70x
-g 60x /‘) / -§ 60x
50x 50x
2(
(% 40x / (% 40x
30x 30x
20x 20x
e
7
10x 10x “:"“"—"—x—n—u-n—x-,
0x 0x = R
8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128
Number of Cores Number of Cores
(b) 130.1i (c) 164.gzip
120x Spec-DSWP+(S,DOALL,S] —— 120x Spec-DSWP+{S,DOALL,S] ——
110 TLS - 110x TLS -
100x 100x
90x 90x X
%X B
80x 80x S
% 70x % 70x ﬁ"
pE=
60x 60x
% 50x g 50x V"(
40x 40x 3
30x 30x - %
20x 20x
10x o HQ)FN(H%WH_)H_K\‘) % 10x "}
ZooNE F
0x 0x
8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128
Number of Cores Number of Cores
(e) 197.parser (f) 256.bzip2
120x T Eye e s 120x o
Spec-DSWP+[DOALL,S| —— DSWP+[Spec-DOALL,S| —— P
110x 110x
TLS - TLS =
100x 100x /(«
90x 90x)2
80x 80x X
o o)/(
_§ 70x ‘—N(—N _g 70x
60x s 60x
(%a)x free 8.50x S R
40x J 40x ot e
30x 30x
20x 20x /(
10x el 10x
0x 0x
8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128
Number of Cores Number of Cores
(h) 464.h264ref (i) blackscholes
o Spec-DOALL —— 4 o Spec-DSWP ——
110x TLS ~x 110x TLS —x
100x o 100x DSMTX Best -~&-
90x 90x
80x 80x
~
% 70x / % 70x
-§ 60x // -g 60x
(8. 50x X 8. 50x 5
40x re 40x - e
ol
30x 30x eyt
BE@EQ
20x 20x
10x 10x e
0x 0x

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

Number of Cores
(k) swaptions

T
8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

Number of Cores
(1) Geomean

Figure 4: Performance scalability of Spec-DSWP and TLS using DSMTX

[Benchmark | Source Suite Description [Parallelization Paradigm [Speculation Types |

052.alvinn SPEC CFP 92 neural network Spec-DOALL | MV

130.11 SPEC CINT 95 lisp interpreter DSWP+[Spec-DOALL,S] CFS,MVS.MV
164.gzip SPEC CINT 2000 | file compressor Spec-DSWP+[S,DOALL,S] | MV

179.art SPEC CFP 2000 image recognition Spec-DSWP+[S,DOALL,S] | MV

197.parser SPEC CINT 2000 | English parser Spec-DSWP+[S,DOALL,S] CFS,MVS.MV
256.bzip2 SPEC CINT 2000 | file compressor Spec-DSWP+[S,DOALL,S] CFS,MV
456.hmmer SPEC CINT 2006 | gene sequence database search Spec-DSWP+[DOALL,S] | MV

464 .h264ref SPEC CINT 2006 | video encoder Spec-DSWP+[DOALL,S] | MV

crc32 Ref. Impl. polynomial code checksum DSWP+[Spec-DOALL,S] | CFSMV
blackscholes | PARSEC option pricing DSWP+[Spec-DOALL,S] | CFS
swaptions PARSEC portfolio pricing Spec-DOALL | CFS

CFS = Control Flow Speculation, MVS = Memory Value Speculation, MV = Memory Versioning
Table 2: Benchmark Details

5.3. Communication Characteristics and Optimiza-
tion

Figure 5(a) presents each application’s bandwidth require-
ments when parallelized using Spec-DSWP. Bandwidth is
computed by dividing the total data transferred via DSMTX by
the application’s execution time. To show how the bandwidth
requirement increases as more cores are used, data is presented
for three consecutive core counts starting from the number of
pipeline stages in the parallelization.

The figure shows that 164 .gzip has very high bandwidth
requirements that grow as the number of threads is increased,
explaining its limited scalability. Interestingly, the amount of
data transferred by 256.bzip2 is similar to 164.gzip;
however, the amount of computation in 256 .bzip2 is much
more resulting in longer execution time and much lower band-
width. This explains the vast difference in their performance
improvements.

Figure 5(a) also explains the plateauing of the speedups
of 052.alvinn and 197.parser. In both programs, as
the number of threads increases, the application bandwidth
increases much faster when compared to the other programs.
At a large number of threads, the bandwidth requirements limit
the speedup.

Although Spec-DSWP is communication latency tolerant,
it is sensitive to the overhead of the operations required
to send a datum [25]. Since a single invocation of a send
or receive function can take as many as 2,295 instructions
in OpenMPI [8], DSMTX coalesces multiple data transfer
requests, thereby amortizing the costs. Communication using
DSMTX queues can sustain a bandwidth of 480.7 MBps,
whereas communication using MPI_Send, MPI_Bsend, or
MPI_TIsend directly provides 13.1, 12.7 and 8.1 MBps of
bandwidth respectively. The increased bandwidth boosts pro-
gram performance as shown in Figure 5(b). In 052.alvinn,

164.gzip and 256 .bzip2, array data is already explicitly
produced in the form of chunks. Consequently, they do not
benefit from this optimization.

5.4. Recovery Overhead

To analyze the overhead of recovery from misspeculation,
inputs to each benchmark are modified to cause misspeculation
at a rate of 0.1%. 052.alvinn, 164.gzip, 179.art,

‘ ‘ 118,791‘ %,009 ‘
1,000 |- 65,742
& 800
=
S 600
=t
2 400
=1
<
m200
0 = = o = o~ P S © o 2]
£ 2 § 8 2 & & £ 2 g §
> 8 g N NS S 2 =
= - v & & £ £ & § ° &
o S T g 8 g = Z g
pe 2 4 2 3 3 z
<t =
Benchmark
(@)
120x T T T T T =
O Non-Optimized [
100x o Optimizped 7
o 80x b
3
8 60x - B
a
40x - -
20x m FH bl
o m Il [l w0
5 o o o 5 R T © 2 =2 :;E’
= - =& & 2 E § § o =&
o N - g g
8 2 o 5 T 2 z
+ =
Benchmark

(b)

Figure 5: (a) Bandwidth requirement for each application. As
more cores are used, the required communication bandwidth
increases. Some programs have very high bandwidth require-
ments. Both factors limit performance scalability; (b) Effect
of communication optimization on 128 cores. Batched com-
munication in DSMTX yields much better speedup compared
to communication using MPI_Send and MPI_Recv directly.

456 .hmmer and 464 .h264ref are not evaluated because
they do not have input-dependent misspeculation.

Figure 6 illustrates the overhead due to recovery from
misspeculation. Recovery is done at multiple thread counts
to illustrate overhead trends. Each full bar shows speedup
when there is no misspeculation. MIS shows the speedup
when iterations misspeculate at a rate of 0.1%. The difference

120x T T

RFP
SEQ
FLQ
ERM
MIS

100x —

EOEEC

80x

60x

Speedup

40x

20x

0x

130.1i

197.parser 256.bzip2 crc32 blackscholesswaptions
Benchmark

Figure 6: Recovery overhead analysis with a misspeculation
rate of 0.1%. (RFP: ReFill Pipeline, SEQ: SEQuential execu-
tion, FLQ: FLush Queue, ERM: Enter Recovery Mode, MIS:
speedup with MISspeculation)

between the two bars is the recovery overhead which may be
broken down as follows. ERM is the time taken to synchronize
workers before recovery starts; FLQ is the time taken to flush
the communication queues and reinstall page protections; SEQ
is the time taken to re-execute the misspeculated iteration, and
RFP is the time taken to fill the pipeline again. The RFP phase
has the highest overhead. Since DSMTX processes iterations
in order, it squashes all iterations higher than the one in which
misspeculation occurred causing the work done in the later
iterations to go to waste. This process empties the pipeline
after misspeculation. RFP accounts for the time to refill the
pipeline again. Interestingly, the communication optimization
described in Section 5.3 may cause many iterations worth
of work to be wasted. This is the reason for the high RFP
overhead in 197.parser, crc32, blackscholes and
swaptions. Reducing the communication batch size can
help reduce RFP overhead, but it may degrade performance
during normal execution.

6. Related Work

Distributed Software Transactional Memory (DSTM):
Distributed software transactional memory systems [5, 10,
16, 19] aim to support transactional execution on systems
without shared memory. None of these systems implement
MTX semantics. DSMTX extends them with MTX to support
Spec-DSWP, and this is the main difference between DSMTX
and other distributed software transactional memory systems.

Distributed Multiversioning (DMV) [19] modifies a soft-
ware distributed shared memory system (SDSM) to support
transactions. DMV and DSMTX expose a unified virtual ad-
dress space to programs. DMV performs transaction validation
and commit at the page granularity by means of page diffing.
This static batching of spatially adjacent words may result in
unnecessary diffs and excessive communication for memory
access patterns that access pages in a sparse fashion. DSMTX
eliminates this problem by performing transactional operations

at the word granularity and batches up the words according to
dynamic access patterns.

Cluster-STM [5] is an STM system for large-scale clusters.
Cluster-STM introduces new memory allocation and dealloca-
tion functions such as stm_alloc, stm_all_alloc, and
stm_free, and forces programmers to use these functions.
By contrast, DSMTX overrides the default malloc and free
functions, which make program modification unnecessary.
Like Cluster-STM, DSMTX exposes a globally shared address
space to programs across the distributed memory system.

DiSTM [16] is a DSTM system which builds on Java Re-
mote Method Invocation (RMI). DiSTM detects and resolves
conflicts at object granularity. In DiSTM, the main node keeps
the committed state of a program, and worker nodes execute
transactions using private cached data. DSMTX has a commit
unit that keeps committed data, and workers which execute
MTXs in their private physical memories. Although DiSTM
allows parallel commits using the multiple leases protocol,
the workers are tightly coupled through the validation/commit
process because a worker cannot start the next transaction until
the current transaction commits. By contrast, DSMTX decou-
ples transaction execution from validation/commit, allowing a
worker to start a new transaction before the commit process
of the current one is completed.

With the exception of Cluster-STM [5], these systems have
not been evaluated and their scalability has not been demon-
strated on platforms with over 100 cores. DSMTX allows
more applications to be parallelized with robust and scalable
performance under high inter-core communication latency by
enabling speculative and pipelined execution. Unlike these
proposals, DSMTX moves the validation/commit operations
into separate stages, allowing fast execution of the critical path.

Partitioned Global Address Space (PGAS) and Soft-
ware Distributed Shared Memory (SDSM): The Unified
Virtual Address (UVA) provided by DSMTX is influenced by
PGAS [9, 13, 18] and SDSM [2]. Like PGAS and SDSM,
UVA provides a unified virtual address space to all threads.
Like PGAS, UVA partitions the address space into several
non-overlapping regions each of which is associated with
a different worker. However, while PGAS is a language-
based approach to concurrency in distributed systems, UVA
is a library-based approach which does not require code
modifications. Compared to SDSM, UVA is customized and
optimized to support DSMTX by selectively supporting co-
herence through Copy-On-Access.

Pipeline Parallelism on Distributed Systems: The three-
stage parallelization paradigm of some benchmarks resembles
Google MapReduce [12]. The first stage dispatches jobs to
threads in the second parallel stage (“map”), which send
results to the third stage (“reduce”). MapReduce is a pro-
gramming model that requires a program to be rewritten as
a sequence of map and reduce operations. DSMTX enables
multiple parallelization paradigms and allows the most well-
performing one to be applied to a program, rather than
enforcing a single paradigm as MapReduce does.

7. Conclusion

This paper proposes Distributed Software Multi-threaded
Transactional memory (DSMTX), a software runtime system
that enables both the DSWP family of parallelization tech-
niques (Spec-DSWP) and the thread-level speculation (TLS)
techniques on both shared memory systems and message-
passing systems. DSMTX is implemented on a commodity
cluster with 32 nodes (128 cores), and 11 applications from the
SPEC CPU benchmark suites [26] and PARSEC benchmark
suite [4] are parallelized using Spec-DSWP and TLS. DSMTX
achieves a geomean speedup of 49x.

DSMTX may also be useful for emerging manycore archi-
tectures that discard chip-wide cache coherence [14]. These
architectures offer challenges similar to those found in clusters.
DSMTX can add value to these platforms by enabling scalable
parallelization of a variety of codes.

Acknowledgment

We thank the Liberty Research Group for their support
and feedback during this work. We also thank the anony-
mous reviewers for their insightful comments and suggestions.
The evaluation presented in this paper were performed on
computational resources supported by the PICSciE-OIT High
Performance Computing Center and Visualization Laboratory.
This material is based upon work supported by the National
Science Foundation under Grant No. CCF-0811580 and OCI-
0849512, and the Air Force Research Laboratory.

References

[1] R. Allen and K. Kennedy. Optimizing compilers for modern architectures: A
dependence-based approach. Morgan Kaufmann Publishers Inc., 2002.

[2] C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu,
and W. Zwaenepoel. TreadMarks: Shared memory computing on networks of
workstations. Computer, 29(2):18-28, 1996.

[3] D. I. August, N. Vachharajani, and M. J. Bridges. System and method for sup-
porting multi-threaded transactions. United States Patent Application 12/380677.
March 2008.

[4] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark suite:
characterization and architectural implications. In PACT ’08: Proceedings of
the 17th International Conference on Parallel Architectures and Compilation
Techniques, 2008.

[S] R. L. Bocchino, V. S. Adve, and B. L. Chamberlain. Software transactional
memory for large scale clusters. In PPoPP ’08: Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and practice of parallel programming, 2008.

[6] M. Bridges, N. Vachharajani, Y. Zhang, T. Jablin, and D. August. Revisiting the

sequential programming model for multi-core. In MICRO "07: Proceedings of the

40th Annual IEEE/ACM International Symposium on Microarchitecture, 2007.

M. J. Bridges. The VELOCITY Compiler: Extracting Efficient Multicore Execution

from Legacy Sequential Codes. PhD thesis, Department of Computer Science,

Princeton University, Princeton, New Jersey, United States, November 2008.

[8] D. Buntinas, G. Mercier, and W. Gropp. Implementation and evaluation of
shared-memory communication and synchronization operations in MPICH2 using
the nemesis communication subsystem. Parallel Computing, North-Holland,
33(9):634-644, 2007.

[9] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von

Praun, and V. Sarkar. X10: An Object-Oriented Approach to Non-Uniform

Cluster Computing. In OOPSLA ’05: Proceedings of the 20th Annual ACM

SIGPLAN Conference on Object-Oriented Programming Systems, Languages, and

Applications, 2005.

M. Couceiro, P. Romano, N. Carvalho, and L. Rodrigues. D2STM: Dependable

distributed software transactional memory. Pacific Rim International Symposium

on Dependable Computing, IEEE, 0:307-313, 2009.

R. Cytron. DOACROSS: Beyond vectorization for multiprocessors. In Proceedings

of the International Conference on Parallel Processing, August 1986.

J. Dean and S. Ghemawat. MapReduce: simplified data processing on large

clusters. In OSDI’04: Proceedings of the 6th conference on Symposium on

Opearting Systems Design & Implementation, 2004.

[7

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

[28]

[29]

[30]

[31]

[32]

[35]

[36]

[37]

T. El-Ghazawi, W. Carlson, T. Sterling, and K. Yelick. UPC: Distributed Shared-
Memory Programming. John Wiley and Sons, 2005.

J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D. Jenkins,
H. Wilson, N. Borkar, G. Schrom, F. Pailet, S. Jain, T. Jacob, S. Yada, S. Marella,
P. Salihundam, V. Erraguntla, M. Konow, M. Riepen, G. Droege, J. Lindemann,
M. Gries, T. Apel, K. Henriss, T. Lund-Larsen, S. Steibl, S. Borkar, V. De, R. Van
Der Wijngaart, and T. Mattson. A 48-Core IA-32 message-passing processor with
DVES in 45nm CMOS. In Solid-State Circuits Conference Digest of Technical
Papers (ISSCC), 2010 IEEE International, 7-11 2010.

J. Huang, A. Raman, Y. Zhang, T. B. Jablin, T.-H. Hung, and D. 1. August. De-
coupled Software Pipelining Creates Parallelization Opportunities. In Proceedings
of the 2010 International Symposium on Code Generation and Optimization, April
2010.

C. Kotselidis, M. Ansari, K. Jarvis, M. Lujan, C. Kirkham, and I. Watson.
DiSTM: A software transactional memory framework for clusters. In ICPP '08:
Proceedings of the 2008 37th International Conference on Parallel Processing,
2008.

C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program
analysis & transformation. In CGO ’04: Proceedings of the International
Symposium on Code Generation and Optimization, 2004.

K. Y. Luigi, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishnamurthy,
P. Hilfinger, S. Graham, D. Gay, P. Colella, and A. Aiken. Titanium: A high-
performance Java dialect. pages 10-11, 1998.

K. Manassiev, M. Mihailescu, and C. Amza. Exploiting distributed version
concurrency in a transactional memory cluster. In PPoPP ’06: Proceedings of
the eleventh ACM SIGPLAN symposium on Principles and practice of parallel
programming, 2006.

M. Mehrara, J. Hao, P.-C. Hsu, and S. Mahlke. Parallelizing sequential applications
on commodity hardware using a low-cost software transactional memory. In
PLDI ’09: Proceedings of the 2009 ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2009.

C. E. Oancea and A. Mycroft. Software thread-level speculation: an optimistic
library implementation. In IWMSE ’'08: Proceedings of the Ist International
Workshop on Multicore Software Engineering, 2008.

G. Ottoni, R. Rangan, A. Stoler, and D. I. August. Automatic thread extraction with
decoupled software pipelining. In MICRO ’05: Proceedings of the 38th Annual
IEEE/ACM International Symposium on Microarchitecture, 2005.

D. A. Patterson and J. L. Hennessy. Computer Organization and Design: The
Hardware/Software Interface. Morgan Kaufmann, San Francisco, CA, 4th edition,
2008.

A. Raman, H. Kim, T. R. Mason, T. B. Jablin, and D. I. August. Speculative
Parallelization Using Software Multi-threaded Transactions. In Proceedings of
the Fifteenth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), March 2010.

R. Rangan, N. Vachharajani, A. Stoler, G. Ottoni, D. I. August, and G. Z. N.
Cai. Support for high-frequency streaming in CMPs. In Proceedings of the 39th
International Symposium on Microarchitecture, December 2006.

Standard Performance Evaluation Corporation (SPEC). http://www.spec.org.

J. G. Steffan, C. Colohan, A. Zhai, and T. C. Mowry. The STAMPede approach to
thread-level speculation. ACM Transactions on Computer Systems, 23(3):253-300,
February 2005.

J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. A scalable approach to
thread-level speculation. In Proceedings of the 27th International Symposium on
Computer Architecture, June 2000.

W. Thies, V. Chandrasekhar, and S. Amarasinghe. A practical approach to exploit-
ing coarse-grained pipeline parallelism in C programs. In MICRO ’07: Proceedings
of the 40th Annual IEEE/ACM International Symposium on Microarchitecture,
2007.

C. Tian, M. Feng, V. Nagarajan, and R. Gupta. Copy or discard execution model
for speculative parallelization on multicores. In MICRO '08: Proceedings of the
41st Annual IEEE/ACM International Symposium on Microarchitecture, 2008.

N. Vachharajani. Intelligent Speculation for Pipelined Multithreading. PhD thesis,
Department of Computer Science, Princeton University, Princeton, New Jersey,
United States, November 2008.

N. Vachharajani, R. Rangan, E. Raman, M. J. Bridges, G. Ottoni, and D. I. August.
Speculative decoupled software pipelining. In PACT ’07: Proceedings of the 16th
International Conference on Parallel Architecture and Compilation Techniques,
2007.

R. M. Yoo and H.-H. S. Lee. Helper transactions: Enabling thread-level speculation
via a transactional memory system. In PESPMA ’08: Workshop on Parallel
Execution of Sequential Programs on Multi-core Architectures, June 2008.

A. Zhai. Compiler Optimization of Value Communication for Thread-Level
Speculation. PhD thesis, School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA, United States, January 2005.

Y. Zhang, L. Rauchwerger, and J. Torrellas. Hardware for speculative paralleliza-
tion of partially-parallel loops in DSM multiprocessors. In The STH International
Symposium on High-Performance Computer Architecture, February 1999.

H. Zhong, M. Mehrara, S. Lieberman, and S. Mahlke. Uncovering hidden loop
level parallelism in sequential applications. In HPCA ’08: Proceedings of the 14th
International Symposium on High-Performance Computer Architecture, 2008.

C. Zilles and G. Sohi. Master/slave speculative parallelization. In MICRO
'02: Proceedings of the 35th Annual ACM/IEEE International Symposium on
Microarchitecture, 2002.

